АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Кинематика опорно-двигательного аппарата (ОДА)
Рассмотрим кинематику руки человека (рис. 17,43). С точки зрения биомеханики, верхняя конечность может быть смоделирована многозвенным пространстввенным механизмом (рис. 17.43, д). Эта
система имеет семь степеней свободы. Плечевой сустав является шаровидным, т. е. имеет три степени свободы. На рис. 17.43, г он представлен эквивалентной схемой одноосных шарниров, оси вращения которых пересекаются в одной точке, а звенья 1, 2 имеют нулевую длину. Значит, положение седьмой системы координат в абсолютной, нулевой системе координат определяет формула:
где — fe — радиус-вектор точки С в абсолютной системе координатных осей; г7 — радиус-вектор точки С в седьмой системе координат.
Анализируя угловые перемещения, скорости и ускорения звеньев руки при исполнении различных целенаправленных движений типа «возьми—поставь» можно оценивать качественно и количественно процесс реабилитации пациента или использование протеза. Естественно, что при построении кинематической схемы и анализа движений нужно учитывать антропометрические данные (табл. 17.8) и ограничения, налагаемые на движения в суставах (табл. 17.9).
На рис. 17.44 приведена схема двухзвенного механизма, которым моделируется движение нижней конечности в фазе опоры. Такая схема позволяет определить перемещение мгновенного центра вращения бедра. Считается, что плоское движение нижней
б — скелет руки: 1 — ключица, 2 — клювовидный отросток лопатки, 3 — плечевая кость, 4 — лучевая кость, 5 — локтевая кость, 6 — трапециевидная кость, 7 — проксимальная фаланга большого пальца, 8 — кости запястья, 9 — пястные кости, 10 — фаланги пальцев, д — система координат звеньев; а — кинематическая схема: 1 — «плечевой» пояс, 2 — плечевая сферическая кинематическая пара, 3 — плечо, 4 — локтевая цилиндрическая пара, 5 — предплечье, 6 — кистевая сферическая пара, 7 — кисть, в — мышцы верхней конечности: 1 — трапециевидная, 2 — дельтовидная, 3 — трехглавая мышца плеча, 4 — клювоплечевая, 5 — двуглавая мышца плеча, 6 — плечевая, 7 — плечелучевая, 8 — длинный лучевой разгибатель запястья, 9 — короткий лучевой разгибатель запястья, 10 — разгибатель пальцев, ' 1 — длинная отводящая мышца большого пальца, 12 — короткий разгибатель большого пальца, 13 — длинный разгибатель большого пальца, 14 — межкостная мышца, 15 — передняя зубчатая мышца, 16 — наружная косая мышца живота, 17 — круглый пронатор, 18 — лучевой сгибатель запястья, 19 — длинная ладонная мышца, г — динамическая модель: 7 — туловище, 2 — плечевой шарнир, 3 — плечо, 4 — локтевой шарнир, 5 — предплечье, 6 — шарнир кисти, 7— кисть. Стрелки — компоненты мышечных моментов в суставах
|
конечности происходит в сагиттальной плоскости вокруг оси голеностопного сустава, остающейся неподвижной. За обобщенные координаты принимаются углы ф,(/) и <р2(0. На рис. 17.44 показаны абсолютная и локальные оси координат. Положение точки С в абсолютной системе координатных осей находят по формуле:
Здесь г2 = (0,0, 0, 1)т; В2 = Л Д, где Л. — матрица положения.
Обобщенные координаты задают как функцию времени по результатам экспериментальных наблюдений.
Решение обратной задачи кинематики представляют интерес для медицины и спорта. Формальная постановка обратной задачи кинематики требует решения уравнения:
По заданной матрице В. необходимо найти обобщенные координаты g.. Матричное уравнение (17.1) эквивалентно шести скалярным уравнениям. При этом важно число степеней свободы механизма со, который модулирует органы человека.
1. Если со > 6, то число неизвестных обобщенных координат превышает число уравнений и множество решений оказывается бесконечным.
2. Если со < 6, то число неизвестных меньше числа уравнений. Задача будет иметь решение лишь при некоторых специальных положениях механизма.
3. Если со = 6, то, приравняв наддиагональные элементы матриц 4-4, стоящих слева и справа в уравнении (17.1), можно получить систему из шести трансцендентных уравнений относительно обобщенных координат g Если это решение дает законы изменения обобщенных координат во времени g.(t), то, дифференцируя g.(t), можно найти обобщенные скорости g.(t) и обобщенные ускорения g.(t). Однако при этом погрешности расчета велики из-за необходимости использования методов численного дифференцирования.
Дата добавления: 2015-08-26 | Просмотры: 770 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 |
|