АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Сосудистая ткань

Прочитайте:
  1. A. Острая сосудистая недостаточность
  2. B) Волокнистой соединительной тканью.
  3. B) Волокнистой соединительной тканью.
  4. B) Волокнистой соединительной тканью.
  5. B) Волокнистой соединительной тканью.
  6. B) Волокнистой соединительной тканью.
  7. B) Волокнистой соединительной тканью.
  8. B. Тем, что антитела не успели мигрировать в ткань и фиксироваться на тучных клетках
  9. I. Скелетная мышечная ткань: локализация и принцип строения
  10. L Сосудистая стенка становится шероховатой (фибрин эндотелия (в них застревают лейкоциты), лейкоциты фиксируются у сосудистой стенки с помощью цитоплазматических мостиков.

Механические свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Содержание этих составляющих сосудистой ткани изменяется по ходу кровеносной системы. С удалением от сердца увеличивается доля гладких мышечных волокон, в артерио-лах они уже являются основной составляющей сосудистой ткани.

Так как стенки кровеносных сосудов построены из высо­коэластического материала, то они способны к значительным


обратимым изменениям размера при действии на них деформирую­щей силы. Деформирующая сила создается внутренним давлени­ем. При заданном внутреннем давлении Р равновесное состояние сосуда описывается уравнением Ламе:

где г— внутренний радиус кровеносного сосуда, h — толщина стен-
ки сосуда, q– механическоенапряжение и стенке сосуда.

Следует иметь в виду, что живой организм имеет два механиз­ма сопротивления нагрузкам. Некоторые части организма (кости, зубы) воспринимают нагрузку так же, как и неживое тело. Другие (мышцы) — непрерывно подстраиваются под внешнюю нагрузку. Но сохранение напряжения в мышечной ткани требует непрерыв­ного притока энергии. Расход энергии приводит к усталости мышц. Только обморок или смерть прерывают мышечные процессы.

Представления о механических свойствах биологических тка­ней важны для различных направлений:

• в спортивной и космической медицине;

• результативность спортивных достижений и ее возрастание побуждают спортивных медиков обращать внимание на физиче­ские возможности человека;

• в спортивной медицине следует знать устойчивость биоло­гических структур по отношению к различным деформациям;

• в спортивной травматологии и ортопедии вопросы механиче­ского воздействия на организм являются определяющими.


Глава 12


Дата добавления: 2015-08-26 | Просмотры: 627 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)