АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
И ИХ ПРОФИЛАКТИКА
Короткие замыкания. Коротким замыканием (к. з.) называется всякое не предусмотренное нормальными условиями работы замыкание через малое сопротивление между фазами, а в системах с заземленной нейтралью – также замыкание одной или нескольких фаз на землю (или на нулевой провод). При возникновении к. з. в электрической сети ее общее сопротивление резко уменьшается (степень уменьшения зависит от расположения точки к. з. в сети), что приводит к увеличению токов в ее ветвях по сравнению с токами нормального режима. В свою очередь это вызывает снижение напряжения в сети, которое особенно велико вблизи места к. з.
Простейшим видом к. з. является трехфазноек. з., т.е. одновременное замыкание всех трех фаз в одной точке. Оно является симметричным, так как все фазы остаются в одинаковых условиях. К числу несимметричных к. з. в одной точке относятся: двухфазное; однофазное на землю; двухфазное на землю. Какой из видов к. з. является наиболее опасным, однозначно определить нельзя. Величина тока к. з. зависит от многих факторов, например, параметров элементов цепи к. з., мощности и напряжения источников, удаленности источников от места к. з., времени действия к. з. Чаще всего возникают однофазные к. з. и значительно реже трехфазные. Однако в процессе развития аварии первоначальный вид к. з. может переходить в другой вид. Так, например, в кабельных сетях почти все однофазные к. з. переходят в трехфазные, так как образовавшаяся электрическая дуга быстро разрушает изоляцию между жилами кабеля.
Основной причиной возникновения коротких замыканий является нарушение изоляции в электрических проводах, кабелях, машинах и аппаратах, которое вызвано: перенапряжениями, прямыми ударами молнии, старением изоляции, недостаточно тщательным уходом за электрооборудованием и механическими повреждениями изоляции. В практике наблюдались случаи, когда к. з. возникали от перекрытия токоведущих частей животными и птицами.
Опасность коротких замыканий. В современных электрических системах токи коротких замыканий могут достигать десятков тысяч ампер. Такие токи в самый незначительный промежуток времени, выделяют большое количество тепла в проводниках, что вызывает резкое повышение температуры и воспламенение горючей изоляции, расплавление металла проводников с последующим мощным выбросом в окружающую среду электрических искр, способных вызвать воспламенение и взрыв легкогорючих материалов и взрывоопасных смесей. Кроме теплового действия, токи короткого замыкания вызывают между проводниками большие механические усилия. При недостаточной прочности проводников и их креплений они могут быть разрушены.
Внезапное снижение напряжения при к. з. отражается на работе потребителей, особенно на двигателях, так как у них вращающий момент пропорционален квадрату напряжения, и при понижении напряжения на 30 – 40 % в течение одной и более секунд они могут остановиться. На некоторых производствах остановка двигателей приводит к нарушению технологического процесса, браку продукции, а иногда к пожару и взрыву. При малой удаленности и достаточно длительном времени к. з. возможно выпадение из синхронизма параллельно работающих генераторов, т. е. нарушение нормальной работы всей системы, что является, в сущности, самым опасным последствием коротких замыканий.
Наиболее характерными признаками к. з. являются оплавление проводов и других токоведущих устройств. Эти оплавления в большинстве случаев имеют вид наплавленных шариков металла. Они отличаются от оплавлений, возникающих под воздействием тепла во время пожара. Оплавления проводов от воздействия тепла во время пожара происходят на значительных участках и не имеют резко выраженной границы. Факт к. з. до возникновения пожара может быть зафиксирован показаниями электроизмерительных приборов. Так, амперметры отмечают резкое увеличение силы тока в сети, а вольтметры – падение напряжения. При снижении напряжения уменьшается накал ламп (возможно их мигание), уменьшается частота вращения электродвигателей, возможно отключение магнитных пускателей и др.
Профилактику коротких замыканий следует проводить в двух направлениях: во-первых, не допустить возникновения коротких замыканий, и, во-вторых, ограничить время действия опасных токов, т.е. не допустить опасных последствий к. з.
Мерами предупреждения коротких замыканий являются правильный выбор, монтаж и эксплуатация электроустановок. Распределительные щитки, машины, аппараты, приборы, провода, кабели и прочее электрооборудование должны соответствовать характеру окружающей среды, величине и роду тока, напряжению, мощности нагрузки. При эксплуатации электроустановок необходимо регулярно проводить планово-предупредительные осмотры и измерения сопротивления изоляции.
Для ликвидации опасных последствий коротких замыканий устанавливают аппараты защиты, которые предназначены отключать поврежденный участок раньше, чем произойдет воспламенение изоляции, расплавление токоведущих жил проводников и другие последствия к. з. Для этой цели используют быстродействующие автоматы (с временем отключения 0,008-0,005 с) и плавкие предохранители. Для уменьшения понижения напряжения при к. з. генераторы электростанций имеют автоматические регуляторы напряжения (АРН). С целью уменьшения токов к. з. на трансформаторных подстанциях устанавливают реакторы, которые представляют собой катушки, имеющие малое активное сопротивление и большую индуктивность.
Перегрузки. Перегрузкой называется такое явление, когда по проводам и кабелям электрических сетей, обмоткам машин и аппаратов идет рабочий ток I р больше длительно допустимого I д т. е. I Р> I д. Величина рабочего тока I р зависит от мощности и вида включенных токоприемников, напряжения в сети, ее определяют расчетом или по показаниям приборов. Величина длительно допустимых токов зависит от сечения и материала проводников, способа прокладки, конструкции проводников и температуры окружающей среды. На проводники большего сечения допускаются большие токи, на медные проводники допускается больший ток, чем на алюминиевые того же сечения, на открыто проложенные проводники допускается больший ток, чем на проложенные в трубах, трубках и, наконец, на двух-, трех- и многожильные проводники допустимые токи меньше чем на одножильные. Длительно допустимые токовые нагрузки на провода и кабели различных марок, с учетом вышеизложенного, установлены Правилами устройства электроустановок (ПУЭ) из расчета безопасного нагрева жил проводов (с резиновой, найритовой, полихлорвиниловой изоляцией +65 °С; с бумажной изоляцией +80 °С; голых проводов +70°С) при температуре окружающего воздуха +25 °С, которые приведены в ПУЭ, разд. 1, гл. 1 – 3.
Опасность перегрузки объясняется тепловым действием тока, сущность и количественная сторона которого выражается законом Джоуля-Ленца. При прохождении по проводникам тока больше допустимого их температура может быть выше допустимой. При двукратной и более перегрузке проводников со сгораемой изоляцией происходит ее воспламенение. При небольших перегрузках воспламенение изоляции не наблюдается, но происходит быстрое ее старение. Срок службы изоляции проводников резко сокращается. Так, например, перегрузка проводов с изоляцией класса А на 25 % сокращает срок службы их примерно до 3 – 5 месяцев (вместо 20 лет), а перегрузка на 50 % приводит в негодность провода в течение нескольких часов. Таким образом, перегрузка проводников опасна как большая, так и малая.
Основными причинами перегрузок являются: несоответствие сечения проводников рабочему току; параллельное включение в сеть не предусмотренных расчетом токоприемников без увеличения сечения проводников; попадание на проводники токов утечки, молнии; повышение температуры окружающей среды. Перегрузка двигателей, кроме того, возможна при механической перегрузке на валу, понижении напряжения в сети, работе трехфазного двигателя на двух фазах, неправильном выборе мощности двигателя.
Характерным признаком перегрузок электроустановок является их повышенный нагрев. Перегрев проводников с резиновой изоляцией сопровождается специфическим запахом резины. При значительных перегрузках в сети резко снижается напряжение, уменьшается накал ламп и частота вращения электродвигателей. Перегрузка оказывает наиболее сильное влияние на различные контакты, места соединения и оконцевания проводов, если они выполнены недостаточно качественно, вызывая их перегрев.
Профилактика перегрузок. Во избежание перегрузки необходимо: правильно выбирать сечение проводников по нагреву; ограничивать включение токоприемников в сеть, не рассчитанную на большую нагрузку; создавать необходимые условия для охлаждения проводов, электрических машин и аппаратов, не допуская перегрева их выше допустимых температур, определенных соответствующими ГОСТ и Правилами. Во избежание перегрузок двигателей необходимо правильно выбирать двигатели по мощности, не допускать их механической перегрузки, работы на двух фазах, своевременно очищать двигатели от пыли и грязи. Для защиты электроустановок от последствий перегрузок используют плавкие предохранители, автоматические выключатели и тепловые реле магнитных пускателей.
Искрение и электрическая дуга. Всякая электрическая искра или дуга есть результат прохождения тока через воздух. Искрение наблюдается при размыкании электрических цепей под нагрузкой, при пробое изоляции между проводниками, при работе электрических машин – между щетками и коллектором (контактными кольцами), а также во всех случаях при наличии плохих контактов в местах соединения и оконцевания проводов и кабелей. Под действием электрического поля воздух между контактами ионизируется и, при достаточной величине напряжения, происходит разряд, сопровождающийся свечением воздуха и треском (тлеющий разряд). С увеличением напряжения тлеющий разряд переходит в искровой, а при достаточной мощности искровой разряд может быть в виде электрической дуги.
Искры и электрическая дуга, при наличии в помещениях легкогорючих веществ и взрывчатой системы, могут быть причиной пожара, взрыва. Для уменьшения пожарной опасности от электрических искр и дуг необходимо: искрящие по условиям работы части выключателей, переключателей, рубильников, магнитных пускателей, контакторов и т.п. закрывать крышками, кожухами, колпаками; выносить из взрывоопасных помещений искрящие аппараты в безопасное место или применять такие их исполнения (например, маслонаполненное), которые обеспечивают безопасность взрыва; правильно производить соединение и оконцевание проводников; следить за состоянием щеток, колец, коллекторов электрических машин, контактов выключателей, рубильников, магнитных пускателей.
Большие переходные сопротивления, Переходным сопротивлением называется сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электрический аппарат, при наличии плохого контакта, например, в местах соединений и оконцеваний проводов, в контактах машин и аппаратов. При прохождении тока нагрузки в таких местах за единицу времени выделяется некоторое количество тепла, величина которого пропорциональна квадрату тока и сопротивлению места переходного контакта, которое может нагреваться до весьма высокой температуры. Если нагретые контакты соприкасаются с горючими материалами, то возможно их зажигание, а при наличии взрывчатой системы возможен взрыв. В этом и состоит пожарная опасность переходных сопротивлений, которая усугубляется тем, что места с наличием переходного сопротивления трудно обнаружить, а защитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожаров, так как ток в цепи не возрастает, а нагрев участка с переходным сопротивлением происходит только вследствие увеличения сопротивления. Величина переходного сопротивления контактов зависит от материала, из которого они изготовлены, геометрической формы и размеров, степени обработки поверхностей контактов, силы нажатия контактов и степени окисления. Особенно интенсивное окисление происходит во влажной среде и с химически активными веществами, а также при нагреве контактов выше 70 – 75 °С.
Профилактика переходных сопротивлений. Для предупреждения возникновения пожаров от больших переходных сопротивлений необходимо тщательное соединение проводов и кабелей (скруткой, пайкой, сваркой, опрессованием). На съемных концах для удобства и надежности контактов следует применять специальные наконечники и зажимы, что особенно важно для алюминиевых проводов и кабелей; для отвода тепла и рассеивания его в окружающую среду необходимо изготовлять контакты определенной массы и поверхности охлаждения; для уменьшения влияния окисления на переходное сопротивление размыкающихся контактов последние изготовляют таким образом, чтобы размыкание и замыкание их сопровождалось трением одного контакта по другому. В этом случае происходит их самоочистка от пленки окиси. Контакты из меди, латуни, бронзы часто защищают от окисления покрытием тонким слоем олова, серебра. В процессе эксплуатации необходимо следить, за тем, чтобы контакты машин, аппаратов и т.п. плотно и с достаточной силой прилегали друг к другу. Большие переходные сопротивления полезно используются при производстве контактной электросварки металлов.
Вихревые токи. Известно, что при пересечении замкнутого проводника магнитными силовыми линиями в нем индуктируется ток. Токи, которые индуктируются в массивных металлических телах при пересечении их магнитными силовыми линиями, называются вихревыми токами (токами Фуко). Вихревые токи, являясь частным случаем индуктированных токов, подчиняются общим правилам и законам для токов. Вследствие возникновения вихревых токов в массивных проводниках, движущихся в магнитном поле (якоря электрических двигателей) или находящихся неподвижно, но в переменном магнитном поле (сердечники трансформаторов, электромагнитов), выделяется (согласно закону Джоуля — Ленца) определенное количество тепла. Вихревые токи могут быть очень большими и сильно нагревать сердечники машин и аппаратов, что может привести к разрушению изоляции проводников и даже ее воспламенению. Устранить полностью вихревые токи нельзя, но уменьшить можно и нужно.
Для уменьшения вихревых токов якоря генераторов, электрических двигателей, сердечники трансформаторов, электромагнитов делают не сплошными, а наборными из отдельных тонких (0,35 – 0,5 мм) штампованных листов стали, расположенных по направлению магнитных силовых линий и изолированных один от другого. В этом случае, вследствие малого поперечного сечения каждого стального листа, уменьшается величина проходящего через него магнитного потока, а, следовательно, уменьшается индуктируемая в нем ЭДС и ток. С этой же целью применяют легированные стали (стали с содержанием до 4% кремния). Примесь кремния не изменяет магнитных свойств стали, но значительно увеличивает ее электрическое сопротивление, а, следовательно, уменьшает величину вихревого тока и его тепловое действие.
Вихревые токи находят и полезное применение. Тепловое действие вихревых токов используется в электрометаллургии; для индукционного нагрева, с целью термической обработки деталей машин, режущих инструментов; для сушки различных материалов; для отогрева водопроводных труб. Магнитное действие вихревых токов используется в успокоителях колебаний различных приборов; для приведения в действие приборов автоматики, измерительных приборов, счетчиков электрической энергии и т.п.
Дата добавления: 2015-09-03 | Просмотры: 1385 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|