АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Торможение
Координирующая функция локальных нейронных сетей помимо усиления может выражаться и в ослаблении слишком интенсивной активности нейронов за счет их торможения. Торможение, как особый нервный процесс, характеризуется отсутствием способности к активному распространению по нервной клетке и может быть представлено двумя формами — первичным и вторичным торможением.
| Рис. 3.4 Реципрокное (А), пресинаптическое (Б) и возвратное (В) торможение в локальных нейронных цепях спинного мозга
1 — мотонейрон, 2 — тормозный интернейрон, 3 — афферентные терминали.
|
Первичное торможение обусловлено наличием специфических тормозных структур и развивается первично без предварительного возбуждения. Примером первичного торможения является так называемое реципрокное торможение мыщц—антагонистов, обнаруженное в спинальных рефлекторных дугах (рис. 3.4). Суть явления состоит в том, что если активируются проприорецепторы мышцы—сгибателя, то они через первичные афференты одновременно возбуждают мотонейрон данной мышцы—сгибателя и через коллатераль афферентного волокна — тормозный вставочный нейрон. Возбуждение вставочного нейрона приводит к постсинаптическому торможению мотонейрона антагонистической мышцы—разгибателя, на теле которого аксон тормозного интернейрона формирует специализированные тормозные синапсы. Реципрокное торможение играет важную роль в автоматической координации двигательных актов.
Другим примером первичного торможения является открытое Б. Реншоу возвратное торможение (рис. 3.4). Оно осуществляется в нейронной цепи, которая состоит из мотонейрона и вставочного тормозного нейрона — клетки Реншоу. Импульсы от возбужденного мотонейрона через отходящие от его аксона возвратные коллатерали активируют клетку Реншоу, которая в свою очередь вызывает торможение разрядов данного мотонейрона. Это торможение реализуется за счет функции тормозных синапсов, которые клетка Реншоу образует на теле активирующего ее мотонейрона. Таким образом, из двух нейронов формируется контур с отрицательной обратной связью, позволяющий стабилизировать частоту разрядов моторной клетки и подавить идущую к мышцам избыточную импульсацию.
В ряде случаев клетки Реншоу формируют тормозные синапсы не только на активирующих их мотонейронах, но и на соседних мотонейронах со сходными функциями. Осуществляемое через эту систему торможение окружающих клеток называется латеральным.
Торможение по принципу отрицательной обратной связи встречается не только на выходе, но и на входе моторных центров спинного мозга. Явление подобного рода описано в моносинаптических соединениях афферентных волокон со спинальными мотонейронами, торможение которых при данной ситуации не связано с изменениями в постсинаптической мембране. Последнее обстоятельство позволило определить эту форму торможения как пресинаптическое. Оно обусловлено наличием вставочных тормозных нейронов, к которым подходят коллатерали афферентных волокон (рис. 3.4). В свою очередь, вставочные нейроны формируют аксо—аксональные синапсы на афферентных терминалях, являющихся пресинаптическими по отношению к мотонейронам. В случае избыточного притока сенсорной информации с периферии происходит активация тормозных интернейронов, которые через аксо—аксональные синапсы вызывают деполяризацию афферентных терминалей и, таким образом, уменьшают количество выделяемого из них медиатора, а следовательно, и эффективность синаптической передачи. Электрофизиологическим показателем этого процесса является снижение амплитуды регистрируемых от мотонейрона ВПСП. Вместе с тем никаких признаков изменений ионной проницаемости или генерации ТПСП в мотонейронах не наблюдается.
Вопрос о механизмах пресинаптического торможения является довольно сложным. По—видимому, медиатором в тормозном аксо—аксональном синапсе является ГАМК, которая вызывает деполяризацию афферентных терминалей за счет увеличения проницаемости их мембраны для ионов Сl—. Деполяризация снижает амплитуду потенциалов действия в афферентных волокнах и тем самым уменьшает квантовый выброс медиатора в синапсе. Другой возможной причиной деполяризации терминалей может быть повышение наружной концентрации ионов K+ при длительной активации афферентных входов. Следует отметить, что феномен пресинаптического торможения обнаружен не только в спинном мозгу, но и в других отделах ЦНС.
В рассказе о координирующей роли торможения в локальных нейронных цепях, следует упомянуть еще об одной форме торможения — вторичном торможении, которое возникает без участия специализированных тормозных структур как следствие избыточной активации возбуждающих входов нейрона. Эту форму торможения определяют как торможение Введенского (пессимум), который открыл его в 1886 г. при исследовании нервно—мышечного препарата.
Торможение Введенского играет предохранительную роль и возникает при чрезмерной активации центральных нейронов в полисинаптических рефлекторных дугах. Оно выражается в стойкой деполяризации клеточной мембраны, превышающей критический уровень и вызывающей инактивацию Na—каналов, ответственных за генерацию потенциалов действия. Таким образом, процессы торможения в локальных нейронных сетях уменьшают избыточную активность и участвуют в поддержании оптимальных режимов импульсной активности нервных клеток.
Дата добавления: 2015-09-03 | Просмотры: 738 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 |
|