АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Базидиомицеты

  • Urediniomycetes
    • Sporidiales

Дрожжи являются хемоорганогетеротрофами и используют органические соединения как для получения энергии, так и в качестве источника углерода. Им необходим кислород для дыхания, однако при его отсутствии многие виды способны получать энергию за счёт брожения с выделением спиртов (факультативные анаэробы). В отличие от бактерий, среди дрожжей нет облигатных анаэробов, гибнущих при наличии кислорода в среде. При пропускании воздуха через сбраживаемый субстрат дрожжи прекращают брожение и начинают дышать (поскольку этот процесс эффективнее), потребляя кислород и выделяя углекислый газ. Это ускоряет рост дрожжевых клеток (эффект Пастера). Однако даже при доступе кислорода в случае высокого содержания глюкозы в среде дрожжи начинают её сбраживать (эффект Кребтри).[16]

 

Дрожжи достаточно требовательны к условиям питания. В анаэробных условиях дрожжи могут использовать в качестве источника энергии только углеводы, причём в основном гексозы и построенные из них олигосахариды. Некоторые виды (Pichia stipitis, Pachysolen tannophilus, Phaffia rhodozyma) усваивают и пентозы, например, ксилозу.[17] Schwanniomyces occidentalis и Saccharomycopsis fibuliger способны сбраживать крахмал[18], Kluyveromyces fragilis — инулин[19]. В аэробных условиях круг усваиваемых субстратов шире: помимо углеводов в него входят также жиры, углеводороды, ароматические и одноуглеродные соединения, спирты, органические кислоты.[20][21][22][23][24] Гораздо больше видов способно использовать пентозы в аэробных условиях. Тем не менее, сложные соединения (лигнин, целлюлоза) для большинства дрожжей (за исключением некоторых видов рода Trichosporon, проявляющих целлюлолитическую активность) недоступны.[25]

 

Источниками азота для всех дрожжей могут быть соли аммония, примерно половина видов имеет нитратредуктазу и может усваивать нитраты. Пути усвоения мочевины различны у аскомицетовых и базидиомицетовых дрожжей. Аскомицетовые сначала карбоксилируют её, затем гидролизуют, базидиомицетовые — сразу гидролизуют уреазой.

 

Для практического применения важны продукты вторичного метаболизма дрожжей, выделяемые в малых количествах в среду: сивушные масла, ацетоин (ацетилметилкарбинол), диацетил, масляный альдегид, изоамиловый спирт, диметилсульфид и др. Именно от них зависят органолептические свойства полученных с помощью дрожжей продуктов.[26]

Места обитания дрожжей связаны преимущественно с богатыми сахарами субстратами: поверхностью плодов и листьев, где они питаются прижизненными выделениями растений, нектаром цветов, раневыми соками растений, мёртвой фитомассой и т. д., однако они распространены также в почве (особенно в подстилке и органогенных горизонтах) и природных водах. Дрожжи (роды Candida, Pichia, Ambrosiozyma) постоянно присутствуют в кишечнике и ходах ксилофагов (питающихся древесиной насекомых), богатые дрожжевые сообщества развиваются на листьях, поражённых тлёй. Представители рода Lypomyces являются типичными почвенными обитателями.[27]

Отличительной особенностью дрожжей является способность к вегетативному размножению в одноклеточном состоянии. При сопоставлении с жизненными циклами грибов это выглядит как почкование спор или зиготы. Многие дрожжи также способны к реализации полового жизненного цикла (его тип зависит от аффинитета), в котором могут быть и мицелиальные стадии.[28]

У некоторых дрожжеподобных грибов, образующих мицелий, возможен его распад на клетки (артроспоры). Это роды Endomyces, Galactomyces, Arxula, Trichosporon. У последних двух артроспоры после образования начинают почковаться. Trichosporon также образует вегетативные эндоспоры внутри клеток мицелия.

При половом размножении дрожжей сливаться могут не любые 2 клетки, а только гаплоидные клетки разных типов спаривания. Существуют два типа таких клеток, которые различаются между собой по одному генетическому локусу, обозначаемому mat [35] (от англ. mating). Локус может находиться в одном из двух аллельных состояний: mat a и mat α. Mat a клетки синтезируют половые гормоны, которые дают сигнал α-клеткам. α-клетки отвечают a-клеткам, активируя мембранные рецепторы, которые воспринимают только феромоны от клетки противоположенного типа спаривания.[34] Поэтому слияние двух одинаковых клеток невозможно.

После слияния образуется диплоидная клетка с генотипом a/α, которой необходимо стать бесполой, чтоб больше не сливаться, и затем осуществить мейоз. Клетка этого добивается следующим образом. Ген mat а кодирует белок a1, который выполняет две функции: он подавляет считывание мРНК для белка α1 с гена mat α, поэтому фенотип α не развивается (не синтезируются α-феромоны), но он не мешает синтезу белка α2, который репрессирует a-специфичные гены, и фенотип a тоже не развивается. Во-вторых, белки a1 и α2 вместе активируют α/a-специфичные гены, которые необходимы для осуществления мейоза.

Дрожжи могут изменять свой тип спаривания с помощью рекомбинации ДНК. Это изменение у клеток происходит с частотой примерно 10-6 на клетку. Кроме локуса mat в клетке ещё имеется по копии генов mat а и mat α: соответственно HMR (Hidden MAT Right) и HML (Hidden MAT Left).[36] Но эти локусы находятся в молчащем состоянии. Клетка заменяет работающий локус mat на копию. При этом копия снимается с того локуса, который находится в противоположенном аллельном состоянии. За этот процесс отвечает ген НО. Этот ген активен только в гаплоидном состоянии. Он кодирует эндонуклеазы, которые разрезают ДНК в локусе mat. Затем экзонуклеазы убирают участок mat, и на его место встаёт копия HMR или HML.[37]

Некоторые виды дрожжей с давних пор используются человеком при приготовлении хлеба, пива, вина, кваса и др. В сочетании с перегонкой процессы брожения лежат в основе производства крепких спиртных напитков. Полезные физиологические свойства дрожжей позволяют использовать их в биотехнологии. В настоящее время их применяют в производстве ксилита[38], ферментов, пищевых добавок, для очистки от нефтяных загрязнений.

Также дрожжи широко используются в науке в качестве модельных организмов для генетических исследований и в молекулярной биологии. Пекарские дрожжи были первыми из эукариот, у которых была полностью определена последовательность геномной ДНК[3]. Важным направлением исследований является изучение прионов у дрожжей.

Некоторые виды дрожжей являются факультативными и условными патогенами, вызывая заболевания у людей с ослабленной иммунной системой.

Дрожжи рода Candida являются компонентами нормальной микрофлоры человека, однако при общем ослаблении организма травмами, ожогами, хирургическим вмешательством, длительном примененииантибиотиков, в раннем детском возрасте и в старости и т. д. грибы рода кандида могут массово развиваться, вызывая заболевание — кандидоз. Существуют различные штаммы этого гриба, в том числе достаточно опасные. В нормальных условиях в человеческом организме дрожжи рода Candida ограничиваются в своём развитии естественной бактериальной микрофлорой человека (лактобактерии и пр.), но при развитии патологического процесса многие из них образуют высокопатогенные сообщества с бактериями.[73]

Cryptococcus neoformans вызывает криптококкоз, особенно опасный для ВИЧ-инфицированных людей: среди них заболеваемость криптококкозом достигает 7—8 % в США и 3—6 % в Западной Европе. Клетки C. neoformans окружены прочной полисахаридной капсулой, которая препятствует их распознаванию и уничтожению лейкоцитами. Дрожжи этого вида наиболее часто обнаруживаются в помёте птиц, при том что сами птицы не болеют.

Род Malassezia включает облигатных симбионтов теплокровных животных и человека, не встречающихся нигде, кроме их кожных покровов. При нарушениях иммунитета вызывают питириаз (пёстрый лишай),фолликулит и себорейный дерматит. У здоровых людей при нормальном функционировании сальных желез Malassezia никак себя не проявляют и даже играют положительную роль, препятствуя развитию более опасных патогенов[74].

 

2 раздел.

1. Внеклеточная форма вируса — вирион, предназначенная для сохранения и переноса нуклеиновой кислоты вируса, характеризуется собственной архитектурой, биохимическими и молекулярно-генетическими особенностями. Под архитектурой вирионов понимают ультратонкую структурную организацию этих надмолекулярных образований, различающихся размерами, формой и сложностью строения. Для описания архитектуры вирусных структур разработана номенклатура терминов:

Белковая субъединица — единая, уложенная определенным образом полипептидная цепь.
Структурная единица (структурный элемент) — белковый ансамбль более высокого порядка, образованный несколькими химически связанными идентичными или неидентичными субъединицами.
Морфологическая единица — группа выступов (кластер) на поверхности капсида, видимая в электронном микроскопе. Часто наблюдаются кластеры, состоящие из пяти (пентамер) и шести (гексамер) выступов. Это явление получило название пентамерно-гексамерной кластеризации. Если морфологическая единица соответствует химически значимому образованию (сохраняет свою организацию в условиях мягкой дезинтеграции), то применяют термин капсомер.

Капсид — внешний белковый чехол или футляр, образующий замкнутую сферу вокруг геномной нуклеиновой кислоты.
Кор (core) — внутренняя белковая оболочка, непосредственно примыкающая к нуклеиновой кислоте.
Нуклеокапсид — комплекс белка с нуклеиновой кислотой, представляющий собой упакованную форму генома.
Суперкапсид или пеплос — оболочка вириона, образованная липидной мембраной клеточного происхождения и вирусными белками.
Матрикс — белковый компонент, локализованный между суперкапсидом и капсидом.
Пепломеры и шипы — поверхностные выступы суперкапсида.

Как уже отмечалось, вирусы могут проходить через самые микроскопические поры, задерживающие бактерии, за что и были названы фильтрующимися агентами. Свойство фильтруемости вирусов обусловлено размерами, исчисляемыми нанометрами (нм), что на несколько порядков меньше, чем размеры самых мелких микроорганизмов. Размеры вирусных частиц, в свою очередь, колеблются в относительно широких пределах. Самые мелкие просто устроенные вирусы имеют диаметр чуть больше 20 нм (парвовирусы, пикорнавирусы, фаг Qβ), вирусы средних размеров — 100-150 нм (аденовирусы, коронавирусы). Наиболее крупными признаны вирусные частицы осповакцины, размеры которых достигают 170x450 нм. Длина нитевидных вирусов растений может составлять 2000 нм.

Представители царства Vira характеризуются разнообразием форм. По своей структуре вирусные частицы могут быть простыми образованиями, а могут представлять собой достаточно сложные ансамбли, включающие несколько структурных элементов. Условная модель гипотетического вириона, включающего все возможные структурные образования, представлена на рисунке.

Существует два типа вирусных частиц (ВЧ), принципиально отличающихся друг от друга:

1) ВЧ, лишенные оболочки (безоболочечные или непокрытые вирионы);

2) ВЧ, имеющие оболочку (оболочечные или покрытые вирионы).

 

Рис. 1. Строение гипотетического вириона

Выделено три морфологических типа вирионов, лишенных оболочки: палочковидные (нитевидные), изометрические и булавовидные (рис. 2). Существование первых двух типов непокрытых вирионов определяется способом укладки нуклеиновой кислоты и ее взаимодействием с белками.
1. Белковые субъединицы связываются с нуклеиновой кислотой, располагаясь вдоль нее периодическим образом так, что она сворачивается в спираль и образует структуру под названием нуклеокапсид. Такой способ регулярного, периодического взаимодействия белка и нуклеиновой кислоты определяет образование палочковидных и нитевидных вирусных частиц.
2. Нуклеиновая кислота не связана с белковым чехлом (возможные нековалентные связи очень подвижны). Такой принцип взаимодействия определяет образование изометрических (сферических) вирусных частиц. Белковые оболочки вирусов, не связанные с нуклеиновой кислотой, называют капсидом.

3. Булавовидные вирионы обладают дифференцированной структурной организацией и состоят из ряда дискретных структур. Основными структурными элементами вириона являются изометрическая головка и хвостовой отросток. В зависимости от вируса в структуре вириона также могут присутствовать муфта, шейка, воротничок, хвостовой стержень, хвостовой чехол, базальная пластинка и фибриллы. Наиболее сложную дифференцированную структурную организацию имеют бактериофаги T-четной серии, вирион которых состоит из всех перечисленных структурных элементов.

Вирионам или их компонентам могут быть присущи два основных типа симметрии (свойство тел повторять свои части) — спиральный и икосаэдрический. В том случае, если компоненты вириона обладают разной симметрией, то говорят о комбинированном типе симметрии ВЧ. (схема 1).

Спиральная укладка макромолекул описывается следующими параметрами: числом субъединиц на виток спирали (u, число необязательно целое); расстоянием между субъединицами вдоль оси спирали (p); шагом спирали (P); P=pu. Классическим примером вируса со спиральным типом симметрии является вирус табачной мозаики (ВТМ). Нуклеокапсид этого палочковидного вируса размером 18x300 нм состоит из 2130 идентичных субъединиц, на виток спирали приходится 16 1/3 субъединиц, шаг спирали составляет 2,3 нм.

Икосаэдрическая симметрия — самая эффективная для конструирования замкнутого чехла из отдельных субъединиц. При рассмотрении элементов икосаэдрической симметрии следует различать понятия симметрия и форма. Симметрия в данном случае — это набор поворотов, которые переводят объект сам в себя, форма — это лишь общий вид кубической поверхности объекта (тетраэдр, октаэдр, додекаэдр и т. д.). Многие объекты, имея икосаэдрическую симметрию, не имеют икосаэдрической формы. Икосаэдр — это геометрическая фигура, имеющая 12 вершин, 20 граней, 20 ребер.

Наименьшее число структурных элементов, способных образовать икосаэдр, равно 60, однако капсиды сложноустроенных вирусов могут быть образованы 60n структурными элементами. Для описания икосаэдрической упаковки структурных элементов в капсиде введено так называемое триангуляционное число (T). Это число, равное частному от деления числа субъединиц на 60. Так, у вируса некроза табака и фага φX174 T=1 (60 субъединиц), многие вирусы растений имеют T=3 (180 субъединиц), вирус Синдбис имеет T=4 (240 субъединиц), ротавирус имеет T=13 (780 субъединиц).

Многие крупные икосаэдрические вирусы для получения плотной упаковки капсида формируют субтриангуляции на основе структур меньших размеров, что предполагает наличие разных типов субъединиц на вершинах икосаэдра и нарушение локальной симметрии в местах их контактов. В этом случае наблюдается расхождение между реально существующей симметрией ВЧ и видом структуры с соответствующим числом Т. Наиболее простую конструкцию капсида, построенного по такому принципу, имеют паповавирусы. Их капсид образован 72 морфологическими единицами, каждая построена из трех белковых субъединиц, организованных в пентамеры, а ВЧ имеет вид структуры с Т=7.

Более сложная структура вириона наблюдается у аденовируса, капсид которого организован по принципу ансамблей, обладает строгой икосаэдрической симметрией и имеет вид структуры с Т=25. На вершинах икосаэдра находятся кластеры — пентоны, содержащие в основании так называемые фибры — стержень с утолщением на конце. Остальная структура капсида построена из гексонов. Гексоны и пентоны — это простейшие подструктуры капсида аденовирусов. Всего в состав аденовириона входит 12 оснований пентонов и 240 гексонов. При диссоциации в мягких условиях образуются надструктуры (капсомеры), состоящие из 9-ти гексонов.
Еще более сложноустроенные вирионы, на пример частицы бактериофагов T-чётной серии, обладают комбинированным типом симметрии. Так, головка бактериофага T4 имеет икосаэдрический тип симметрии, а сокращенный чехол хвостового отростка обладает спиральным типом симметрии. В целом вирион фага T4 обладает комбинированным типом симметрии.

Другой тип вирусных частиц — это покрытые или оболочечные вирионы. Оболочечные вирионы, также как и непокрытые, могут быть палочковидными, нитевидными и изометрическими разной формы — от четко очерченных кирпичеобразных вирионов вируса оспы до плейоморфных частиц вирусов герпеса и коронавирусов, имеющих различные размеры и форму.

Оболочка вириона (пеплос, суперкапсид) состоит из липидсодержащей мембраны клеточного происхождения (цитоплазматической мембраны, мембраны эндоплазматического ретикулюма или аппарата Гольджи, ядерной мембраны) и вирусных гликопротеинов, встроенных в мембрану. Оболочку вирионы приобретают в процессе почкования через ту или иную мембрану.

Вирусные гликопротеины, находящиеся в мембране, как правило, формируют поверхностные выступы, называемые шипами и пепломерами. Эти поверхностные выступы характеризуются разной степенью упорядоченности и могут быть представлены одним белком (вирус кори) или двумя разными белками (вирусы гриппа, ретровирусы), могут быть образованы мономерами белка или его димерами и тримерами.

Таким образом, структурная организация вириона описывается двумя характеристиками — наличием/отсутствием оболочки и типом симметрии капсида. Оболочечные вирионы могут обладать икосаэдрической, спиральной и комбинированной симметрией капсида, также как и безоболочечные, что представлено на схеме.

 

2. Формы и сочетания клеток

Клетки большинства прокариот имеют форму одного из четырех типов: цилиндрические (палочки) разной длины, сферические (кокки), изогнутые в виде запятой (вибрионы) или спирали (спириллы). Клетки прокариот могут группироваться в устойчивые сочетания (пары, цепочки, гроздья, тетрады и пакеты). Для шарообразных клеток такие группы получили специальные названия (диплококки, стрептококки, стафилококки, сарцины). Цепочки клеток, тесно примыкающие и пересекающиеся друг с другом, прямые и ветвящиеся, могут образовывать трихомы, розетки, плоские таблички и сети. В то же время существуют микроорганизмы необычной формы (квадратные, прямоугольные, бобовидные, звездчатые, тарелкообразные), ветвящиеся и образующие мицелий (актинобактерии), имеющие гифы с почками (Hyphomicrobium), стебельки (Galionella), простеки (Campylobacter). Наконец, существуют бактерии, меняющие свою морфологию в течение жизненного цикла (Corynebacterium, Mycobacterium, Nocardia). Такое явление называется плейоморфизмом.

 

↑Размеры микробных клеток

Несмотря на то, что термин «микроорганизм» подразумевает маленькие размеры, этот признак варьирует в довольно широких пределах.

Большинство прокариот имеет размеры 0,2-10,0 мкм. Однако среди них есть "карлики" и "гиганты". К мельчайшим прокариотам относят нанобактерии, микоплазмы и трепонемы (0,05-0,1 мкм), размеры которых сравнимы с размерами крупных вирусов. В то же время длина ряда крупных спирохет и бесцветных серобактерий достигает 50-100 мкм, а диаметр клетки некоторых нитчатых цианобактерий сравним с диаметром эритроцитов крови человека (7 мкм). Самыми крупными из прокариот являются клетки Epulopiscium fishelsoni и Thiomargarita namibiensis. Первый организм обитает в кишечнике глубоководной рыбы-хирурга и представляет собой толстую палочку с заостренными концами размером 100 х 600 мкм. Кокковидные клетки второго организма, обнаруженного в прибрежных водах Намибии и Чили, достигают 750 мкм в диаметре. В то же время существует микроскопическая морская водоросль Nanochlorum eukaryotum, имеющая настоящее ядро, хлоропласты и митохондрии. Таким образом, размеры известных в настоящее время прокариотических микроорганизмов колеблются от 0,05 до 750 мкм.

 

3. Жгутики прокариот

Жгутикование бактерий:

Жгутики бактерий состоят из трёх субструктур:


Дата добавления: 2015-09-03 | Просмотры: 820 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.007 сек.)