АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Мембраны
Структура мембран. Вверху —фосфолипиды архей: 1 —изопреновые цепочки; 2 — простые эфирные связи; 3 — остаток L-глицерина; 4 — фосфатная группа. Посередине — бактериальные или эукариотические фосфолипиды: 5 — цепочки жирных кислот; 6 — сложноэфирные связи; 7 — остаток D-глицерина; 8 — фосфатная группа. Снизу: 9 — липидный бислой бактерий и эукариот; 10 — липидный монослой некоторых архей
Молекулы, из которых построены мембраны архей, сильно отличаются от тех, которые используются в мембранах других организмов. Это указывает на то, что археи состоят лишь в отдалённом родстве с бактериями и эукариотами[59]. У всех живых организмов клеточные мембраны построены из фосфолипидов. Молекулы фосфолипидов состоят из двух частей: гидрофильной полярной, состоящей из фосфатов, игидрофобной неполярной, состоящей из липидов. Эти компоненты объединены через остаток глицерина. В воде молекулы фосфолипидов кластеризуются, при этом фосфатные «головки» оказываются обращёнными к воде, а липидные «хвосты» — обращёнными от неё и спрятанными внутрь кластера. Главной составляющей мембраны являются два слоя таких фосфолипидов, именуемые липидным бислоем.
Эти фосфолипиды у архей обладают четырьмя необычными чертами:
- У бактерий и эукариот мембраны состоят главным образом из глицерин-сложноэфирных липидов, тогда как у архей они сложены из глицерин-эфирных липидов[60]. Различным является тип связи между остатками липидов и глицерина. Связи двух типов обозначены жёлтым на схеме справа. В сложноэфирных липидах связь сложноэфирная, а в эфирных — эфирная. Эфирные связи химически более стойкие, чем сложноэфирные (эстерные). Эта стабильность помогает археям выживать при высоких температурах, а также в сильнокислых и сильнощелочных средах[61]. Бактерии и эукариоты содержат некоторое количество эфирных липидов, но по сравнению с археями они не являются главной составляющей мембран.
- Имеется отличие в стереохимии — у архей асимметрический центр глицериновой составляющей имеет L-конфигурацию, а не D-, как у других организмов. Поэтому для синтеза фосфолипидов археи используют совершенно другие ферменты, чем бактерии и эукариоты. Такие ферменты появились очень рано в истории жизни, что указывает на то, что археи рано отделились от двух других доменов[59].
- Липидные «хвосты» архей химически отличны от таковых у других организмов. Основу липидов архей составляет изопреноидная боковая цепь, и их липиды представляют собой длинные цепи с множеством побочных ветвей, иногда даже с циклопропановыми и циклогексановыми кольцами[62]. Хотя изопреноиды играют важную роль в биохимии многих организмов, только археи используют их для создания фосфолипидов. Предполагают, что эти разветвлённые цепи, как и эфирные связи, служат для приспособления к обитанию при высоких температурах. Установлено, что изопреноидные мембраны сохраняют в широком диапазоне температур (0—100 °C) жидкокристаллическое состояние, что необходимо для их нормального биологического функционирования. Проницаемость таких мембран для ионов и низкомолекулярных органических веществ также мало изменяется с повышением температуры, в отличие от мембран из «обычных» липидов, у которых она резко возрастает[63].
- У некоторых архей липидный бислой заменяется монослоем. Фактически при этом липидные «хвосты» двух разных фосфолипидных молекул сливаются с образованием одной молекулы с двумя полярными головками. Эти слияния делают мембрану более стойкой и лучше приспособленной для суровых условий[64]. К примеру, ферроплазма имеет липиды этого типа, и они помогают ей выживать в сильнокислых условиях[65].
Клеточная стенка ]
Большинство архей (но не Thermoplasma и Ferroplasma) обладают клеточной стенкой[51]. У большей части из них она сформирована молекулами поверхностных белков, образующих наружный S-слой[66]. S-слой представляет собой жёсткую сетку из белковых молекул, покрывающих клетку снаружи, подобно кольчуге[67]. Этот слой защищает клетку от физических и химических воздействий, а также предотвращает контакт макромолекул с клеточной мембраной[68]. В отличие от бактерий, клеточная стенка архей не содержит пептидогликан[69]. Метанобактерии (лат. Methanobacteriales) имеют клеточные стенки, содержащие псевдопептидогликан, который напоминает пептидогликан эубактерий по морфологии, функции и физической структуре, но отличен по химической: в нём нет остатков D-аминокислот и N-ацетилмурамовой кислоты[68].
Жгутики [править | править исходный текст]
Жгутики архей работают так же, как и у бактерий: их длинные нити приводятся в движение вращательным механизмом в основании жгутика. Этот механизм работает за счёт трансмембранного протонного градиента. Тем не менее жгутики архей значительно отличаются от бактериальных по строению и способу сборки[57]. Два типа жгутиков развились из разных предковых структур. Бактериальный жгутик и система секреции III типа имели общую предковую структуру[70][71], а архейный жгутик произошёл от бактериальных пилей IV типа[72]. Жгутик бактерий полый внутри и собирается из субъединиц, которые проходят вверх по центральной поре к концу жгутика. Жгутики же архей строятся путём добавления субъединиц в их основание[73]. Кроме того, в отличие от бактериальных жгутиков, в жгутики архей входит несколько видов флагеллинов.
Метаболизм[править | править исходный текст]
Археи демонстрируют огромное разнообразие химических реакций, протекающих в их клетках в процессе метаболизма, а также источников энергии. Эти реакции классифицируются по группам питания в зависимости от источников энергии иуглерода. Некоторые археи получают энергию из неорганических соединений, таких как сера или аммиак (они являются литотрофами). К ним относятся нитрифицирующие археи, метаногены и анаэробные метаноокислители[74]. В этих реакциях одно соединение отдаёт электроны другому (окислительно-восстановительные реакции), а выделяющаяся при этом энергия служит топливом для осуществления различных клеточных процессов. Соединение, отдающее электроны, называется донором, а принимающее — акцептором. Выделяющаяся энергия идёт на образование АТФ путём хемиосмоса. В сущности, это основной процесс, протекающий в митохондриях эукариотических клеток[75].
Другие группы архей используют в качестве источника энергии солнечный свет (их называют фототрофами). Однако ни один из этих организмов не образует кислород в процессе фотосинтеза[75]. Многие базовые метаболические процессы являются общими для всех форм жизни, например, археи используют модифицированный вариант гликолиза (путь Энтнера-Дудорова), а также полный или частичный цикл Кребса (трикарбоновых кислот)[25]. Это, вероятно, отражает раннее возникновение этих путей в истории жизни и их высокую эффективность[76].
Типы питания архей
| Тип питания
| Источник энергии
| Источник углерода
| Примеры
| Фототрофы
| Солнечный свет
| Органические соединения
| Halobacteria
| Литотрофы
| Неорганические соединения
| Органические соединения или фиксация углерода
| Ferroglobus, Methanobacteria, Pyrolobus
| Органотрофы
| Органические соединения
| Органические соединения или фиксация углерода
| Pyrococcus, Sulfolobus, Methanosarcinales
| Некоторые эвриархеоты являются метаногенами и обитают в анаэробных средах, таких как болота. Такой тип метаболизма появился рано, и возможно даже, что первый свободноживущий организм был метаногеном[77]. Обычная для этих организмов биохимическая реакция представляет собой окисление водорода с использованием углекислого газа в качестве акцептора электронов. Для осуществления метаногенеза необходимо множество различных коферментов, уникальных для этих архей, таких как кофермент М и метанофуран[78]. Некоторые органические соединения, такие как спирты, уксусная и муравьиная кислоты, могут использоваться метаногенами в качестве альтернативных акцепторов электронов. Подобные реакции протекают у архей, живущих в пищеварительном тракте. У ацидотрофных архей уксусная кислота распадается непосредственно на метан и углекислый газ. Такие ацидотрофные археи относятся к отряду Methanosarcinales. Они являются важной составляющей сообществ микроорганизмов, продуцирующих биогаз[79].
Другие археи используют атмосферный углекислый газ как источник углерода благодаря процессу фиксации углерода (то есть они являются автотрофами). Этот процесс включает в себя либо сильно изменённый цикл Кальвина[80], либо недавно открытый метаболический путь, известный как 3-гидроксилпропионат/4-гидроксибутиратный цикл[81]. Кренархеоты также используют обратный цикл Кребса, а эвриархеоты — восстановительный ацетил-СоА процесс[82]. Фиксация углерода осуществляется за счёт энергии, получаемой из неорганических соединений. Ни один известный вид архей не фотосинтезирует[83]. Источники энергии, которые используют археи, чрезвычайно разнообразны, начиная от окисления аммиака Nitrosopumilales [84][85] до окисления сероводорода или элементарной серы, проводимого Sulfolobus, при этом в качестве акцепторов электронов могут использоваться кислород или ионы металлов[75].
Бактериородопсин Halobacterium salinarum. Ретиноловый кофактор и остатки, осуществляющие переноспротонов, представлены в виде шаро-стержневой модели[86].
Фототрофные археи используют солнечный свет для получения химической энергии в виде АТФ. У Halobacteria активируемые светом ионные насосы как бактериородопсин и галородопсин создают ионный градиент путём выкачивания ионов из клетки через плазматическую мембрану. Запасённая в этом электрохимическом градиенте энергия преобразуется в АТФ с помощью АТФ-синтазы[45]. Этот процесс представляет собой форму фотофосфорилирования. Способность этих насосов переносить ионы через мембраны при освещении обусловлена изменениями, которые происходят в структуре ретиноловогокофактора, скрытого с центре белка, под действием света[87].
Археи размножаются бесполым путём: бинарным или множественным делением, фрагментацией или почкованием. Мейоза не происходит, поэтому даже если представители конкретного вида архей существуют более чем в одной форме, все они имеют одинаковый генетический материал
Археи не образуют споры[108]. Некоторые виды Haloarchaea могут претерпевать смену фенотипа и существовать как клетки нескольких различных типов, включая толстостенные клетки, устойчивые к осмотическому шоку и позволяющие археям выживать в воде с низкой концентрацией соли. Однако эти структуры не служат для размножения, а скорее помогают археям осваивать новые среды обитания[109].
2 4. По устоявшейся классификации в настоящее время выделяют 5 типов архей[167]:
- Crenarchaeota — термофилы, термоацидофилы, серные анаэробные бактерии;
- Euryarchaeota — метаногенные и галофильные археи;
- Nanoarchaeota — единственный известный представитель Nanoarchaeum equitans;
- Korarchaeota — ДНК обнаружена в геотермальных источниках США, Исландии, на рисовых полях Японии, культивируемые виды пока неизвестны;
- Thaumarchaeota — в основном окислители аммония, как например, морской аммоний-окислитель Nitrosopumilus maritimus и аммоний-окислитель преимущественно почвенного происхождения Nitrososphaera gargensis. Недавние филогенетические исследования, основанные на сравнительном анализе структур рибосомальных белков и других важнейших генов, подтвердили существование типа Таумархеот[168].
Иногда выделяют также шестой тип — Aigarchaeota.
ёзе утверждал, что археи, бактерии и эукариоты представляют собой три раздельные линии, рано отделившиеся от общей предковой группы организмов[16][17]. Возможно, это произошло ещё до клеточной эволюции, когда отсутствие типичной клеточной мембраны давало возможности к неограниченному горизонтальному переносу генов, и предки трёх доменов различались между собой по фиксируемым комплектам генов[17][18]. Не исключено, что последний общий предок архей и бактерий был термофилом, это даёт основания предположить, что низкие температуры были «экстремальной средой» для архей, и организмы, приспособившиеся к ним, появились только позже[19]. Сейчас археи и бактерии связаны между собой не больше, чем с эукариотами, и термин «прокариоты» обозначает лишь «не эукариоты», что ограничивает его применимость[20].
25. Физические факторы
Дата добавления: 2015-09-03 | Просмотры: 835 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|