АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Прорастание споры

Прочитайте:
  1. ВОССОЗДАТЬ СПОРЫ И ВНОВЬ ВОСПАРИТЬ
  2. ВОССОЗДАТЬ СПОРЫ И ВНОВЬ ВОСПАРИТЬ
  3. ВОССОЗДАТЬ СПОРЫ И ВНОВЬ ВОСПАРИТЬ
  4. ВОССОЗДАТЬ СПОРЫ И ВНОВЬ ВОСПАРИТЬ
  5. ВОССОЗДАТЬ СПОРЫ И ВНОВЬ ВОСПАРИТЬ
  6. Морфологическая дифференцировка прокариот. Строение эндоспоры. Химический состав, слои.
  7. Морфологическая дифференцировка прокариот. Формирование споры, слои эндоспоры.
  8. Споры бактерий, методы их выявления
  9. Споры бацилл сибирской язвы.

Спорообразование

По числу спор актиномицеты делят на моно- (например, Saccaromonospora, Micromonospora) олиго- (Actinomadura) и полиспоровые (Streptomyces), выделяя особо те, которые образуют спорангии. Спорообразование преимущественно экзогенное (Thermoactinomyces образует настоящие эндоспоры, однако в настоящее время этот род на основании хемотаксономических и генетических признаков, несмотря на выраженную мицелиальную стадию склонны относить к бациллам), реже псевдоэндогенное (Planomonospora, Dactylosporangium).

У Streptomyces и спорулирующих Actinomyces споры образуются в два этапа:

  • Апикальный участок воздушной гифы отделяется септой, нуклеоид вытягивается.
  • Почти одновременно клетка делится септами на участки, нуклеоид делится в тех же местах, клеточная стенка становится в 2 раза толще, споры округляются и их стенка становится в 7 раз толще стенки гифы.

У олигоспоровых септы закладываются базипитально. У монспоровых могут образовываться по механизму почкования.

Спорообразование вызывается т. н. фактором А (C13H22O4).

Прорастание споры

Прорастание происходит в следующие стадии:

  • Инактивная спора гидрофобна, термоустойчива, не проявляет дыхательной активности
  • Смачивающаяся активированная спора проявляет активность ферментов, начинается дыхание
  • Спора набухает, начинается синтез РНК
  • Выход 1—3 (реже 4) ростовых трубок, начинается синтез ДНК. Эта стадия необратима, остальные три — обратимы.

Образуют друзды — скопление переплетенных нитей с колбовидными утолщениями на концах.

Актиномицеты (особенно рода Micromonospora) обнаруживаются в водоёмах и их донных осадках, однако не решен вопрос о том являются ли они постоянными их обитателями или занесены из почвы, неизвестна также их роль в данных местообитаниях.

Почвы являются тем природным субстратом, откуда актиномицеты выделяются в наибольшем разнообразии. Однако большая часть биомассы актиномицетов представлена спорами, которые и дают колонии при учёте популяций в почве методом посева, лишь 1—4 % биомассы занимает мицелий[1]. Он обнаруживается в микрозонах с повышенным содержанием органического вещества.

Актиномицеты доминируют на поздних стадиях микробной сукцессии, когда создаются условия для использования труднодоступных субстратов. Активация актиномицетной микрофлоры происходит при внесении в почву крахмала, хитина, нефтепродуктов и т. д.. В то же время из-за медленного роста актиномицеты не способны конкурировать с немицелиальными бактериями за легкодоступные вещества. Возможно, что вторичные метаболиты (в особенности, меланоидные пигменты) играют какую-то роль в образовании гумуса.

Ценозообразующую роль актиномицеты играют в местах первичного почвообразования, находясь в этих условиях в ассоциации с водорослью. Эти ассоциации в лабораторных условиях формировали лишайникоподобный таллом (актинолишайник).

Актиномицеты (рода Streptomyces, Streptosporangium, Micromonospora, Actinomadura) являются постоянными обитателями кишечника дождевых червей, термитов и многих других беспозвоночных. Разрушая целлюлозу и другие биополимеры, они являются их симбионтами. Представители рода Frankia способны к азотфиксации и образованию клубеньков у небобовых растений (облепиха, ольха и др.). Есть патогенные формы, вызывающие актиномикоз. В организме человека обитают в ротовой полости, в кишечнике, в дыхательных путях, на коже, в зубном налете, в кариозных зубах, на миндалинах.

Для актиномицетов отмечается наличие редких метаболических путей и ферментных систем. Например, для них характерен путь расщепления глюкозы Энтнера-Дудорова, встречается полифосфатгексокиназа (вместо обычной гексокиназы), существуют особенности в синтезе ряда аминокислот; во вторичном метаболизме им свойственен шикиматный путь синтеза ароматических соединений, включение цельных углеродных скелетов глюкозы во вторичные метаболиты, например, антибиотики.

Отличительной особенностью актиномицетов является способность к синтезу физиологически-активных веществ, антибиотиков, пигментов, пахучих соединений. Именно ими формируется специфический запах почвы и иногда воды (веществагеосмин, аргосмин, муцидон, 2-метил-изоборнеол). Актиномицеты являются активными продуцентами антибиотиков, образуя до половины известных науке.

 

21. Представители семейства Rickettsia представлены полиморфными, чаще кокковидными или палочковидными, неподвижными клетками. Грамотрицательны.

В оптимальных условиях клетки риккетсий имеют форму коротких палочек размером в среднем 0,2—0,6 × 0,4—2,0 мкм, что сравнимо с размерами наиболее крупных вирусов (около 0,3 мкм). Их форма и размеры могут несколько меняться в зависимости от фазы роста (логарифмическая или стационарная фазы). При изменении условий роста они легко образуют клетки неправильной формы или нитевидные. На поверхности мембраны клеточной стенки располагается капсулоподобный слизистый покров и микрокапсула, содержащие группоспецифичный «растворимый» антиген. В клеточной стенке локализуются основные белки, большинство из которых являются видоспецифичными антигенами, а также липополисахарид и пептидогликан. В цитоплазматической мембране преобладаютненасыщенные жирные кислоты, она осмотически активна, имеет специфическую транспортную систему АТФ-АДФ. Нуклеоид клетки риккетсий содержит кольцевую хромосому. Размножаются путем бинарного деления, обладают независимым от клетки-хозяина метаболизмом. Источником энергии у внеклеточных риккетсий служит глутамат. Возможно, что при размножении получают макроэргические соединения из клетки-хозяина. Способны индуцировать свой фагоцитоз эукариотной клеткой.

Описаны четыре морфологических типа риккетсий: кокковидные (α), короткие палочковидные (β), длинные палочковидные (γ) и нитевидные (δ).

Жизненный цикл

Жизненный цикл риккетсий имеет две стадии — вегетативную и покоящуюся. В вегетативной стадии микроорганизмы представлены палочковидными, бинарно делящимися и подвижными клетками.

Покоящиеся формы риккетсий — сферические и неподвижные клетки, располагающиеся в клетках членистоногих и теплокровных.

Репродукция, за исключением одного вида, происходит только в живых клетках, то есть, как и вирусы, риккетсии являются облигатными внутриклеточными паразитами, рост и размножение которых происходят в клетках подходящего хозяина. Паразитируют в цитоплазме и ядре или только в цитоплазме клеток членистоногих и теплокровных животных. Лишь один вид риккетсий (Rochalimaea quintana), вызывающий окопную лихорадку, может расти вне клеток в кишечнике вши, а также в бесклеточной питательной среде. В жизненном цикле большинства риккетсий членистоногие являются первичными хозяевами или переносчиками.

У человека риккетсии вызывают острые лихорадочные заболевания — риккетсиозы. Наибольшее значение имеют возбудители эпидемического сыпного тифа (Rickettsia prowazekii), клещевого риккетсиоза (Rickettsia sibirica), пятнистой лихорадки Скалистых гор (Rickettsia rickettsii), лихорадки цуцугамуши (Rickettsia tsutsugamushi).

Патогенные для человека риккетсии, за редким исключением, передаются при укусе зараженных вшей, клещей и блох.

Чувствительны к большинству антибиотиков широкого спектра действия, особенно тетрациклинового ряда. Риккетсии культивируются в желточных мешках куриных эмбрионов, перевиваемых культурах клеток, легких белых мышей.

Хламидии - патогенные грамотрицательные облигатные внутриклеточные бактерии. Хламидии имеют размеры 250-300 нм и при первичном инфицировании поражают клетки основных барьерных систем организма.

Хламидии имеют все основные признаки бактерий:

Хламидии содержат два типа нуклеиновых кислот - ДНК и РНК (дезоксирибонуклеиновую и рибонуклеиновую кислоты, несущие в себе генетическую информацию и информацию о синтезе белка соответственно);

Хламидии содержат рибосомы;

Также хламидии содержат мурамовую кислоту (это компонент клеточной стенки, аналогичный компоненту клеточных стенок грамотрицательных бактерий).

Хламидии - с научной точки зрения...
Хламидии размножаются бинарным делением и чувствительны к некоторым антибиотикам. На основании этих фактов и некоторых других, хламидии были отнесены учеными к бактериям. Длительное время после открытия хламидий в процессе пристального их изучения остро стоял вопрос, к какому типу паразитов отнести хламидии - к вирусам или к бактериям. Размеры хламидийной клетки таковы, что она занимают промежуточное положение между бактериями и вирусами. С позиции эволюции все микроорганизмы условно рассматриваются в следующей последовательности: бактерии - риккетсии - хламидии. На сегодняшний день считают, что хламидии - это мельчайшие бактерии, и по современной классификации хламидии помещены в одну группу с так называемыми риккетсиями, с которыми их объединяет, помимо размера, внутриклеточный паразитизм. Хламидии были выделены в самостоятельный порядок из-за уникального, отличающего их от всех прочих бактерий, внутриклеточного цикла развития.

Как и вирусы, хламидии имеют внешние оболочки, построенные по типу элементарных мембран. А в цикле развития хламидий имеются, наряду со стадиями, характерными для клеточных организмов-риккетсий, и стадии, характерные для вирусов, особенно на начальном периоде развития. Вместе с тем, сам двухфазный жизненный цикл хламидий существенно отличает их от собственно бактерий. Он протекает в цитоплазматической вакуоли в клетке-хозяине и заключается в закономерной смене вегетативных репродуцирующихся крупных неинфекционных клеток хламидии (ретикулярных телец - РТ) и небольших плотных элементарных телец (ЭТ) - инфекционных форм микроорганизма.

Хламидии - цикл размножения бактерии:

Цикл размножения хламидий и вирусов условно можно разделить на раннюю и позднюю фазы (периоды). "Ранний" и "поздний" - удобные термины для описания фаз, приведенных ниже, однако их не следует понимать слишком буквально. Для некоторых этапов эти процессы несколько размыты.

Начальным периодом развития хламидии ("ранней фазой развития хламидии") считается прикрепление элементарного тельца к поверхности (рецепторам) чувствительных клеток (чувствительными клетками для хламидий являются: цилиндрический эпителий слизистых оболочек, эпителиальные клетки различных органов, клетки ретикулоэндотелия, лейкоциты, моноциты и макрофаги.). Затем хламидии как и вирусы адсорбируются с помощью рецепторов клетки-хозяина: происходит слияние оболочки возбудителя с мембраной клетки, а через 4 часа происходит проникновение лишенной оболочки хламидий (в виде элементарного тела) в цитоплазму клетки хозяина. Хламидии, как и вирусы, образуют цитоплазматические включения. Образование колоний этих микрооргнизмов зависит от одних и тех же факторов в клетке-хозяине. Все изменения и трансформации, хламидий как и вирусов, происходят в цитоплазме, где осуществляются все стадии цикла развития возбудителя. Через 8-10 часов после заражения клеток можно наблюдать подавление синтеза ДНК и РНК в инфицированных клетках. Морфологические изменения, сопровождающиеся подавлением синтеза ДНК, также свойственны хламидиям, как и вирусам.

Далее, в результате контакта между возбудителями (как хламидиями, так и вирусами) и чувствительными к ним клетками наблюдается серия одинаковых для этих микроорганизмов реакций, ведущих к появлению внутри клеток свободно "плавающего" генетического материала возбудителей (провируса и ретикулярного тельца). Так после заражения возникает период эклипса (так называемый скрытый период инфекции) в течение которого хламидии не обнаруживаются. Он продолжается как у вирусов, так и хламидий от 2 до 4 часов. Это латентный период, во время которого не удается выявить образования нового вируса или хламидии. Успех этого цикла развития для вирусов и хламидий зависит от того, выйдут ли микроорганизмы (вернее, их свободно плавающий генетический материал) из этого латентного состояния - смогут ли оказаться инфекционными.

По окончании латентного периода наступает стадия, когда у хламидий, как и у вирусов, начинается быстрое созревание и подъем инфекционности. Этот период начинается экспоненциальной фазой (то есть, рост можно описать экспоненциальной кривой), когда инфекционность возрастает с постоянной скоростью, и завершается на фазе снижения скорости прироста инфекционности, которая в конечном итоге достигает максимума. Как оговаривалось выше, подобный цикл развития происходит и у вирусов, и у хламидий. Подводя итог всему сказанному выше, можно сделать следующий вывод: в начале цикла развития - при взаимодействии с клетками - у хламидий и вирусов наблюдаются весьма сходные процессы. Только впоследствии у вирусов сохраняется одна-единственная нуклеиновая кислота до конца цикла репродукции, а у хламидии на поздних стадиях развития появляется вторая (ДНК и РНК).


Дата добавления: 2015-09-03 | Просмотры: 966 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)