Субстратное фосфорилирование
Реакции, в которых энергия, освобождающаяся на определенных окислительных этапах брожениязапасается в молекулах АТФ, получили название субстратного фосфорилирования. Их особенностью является катализирование растворимыми ферментами. Образующийся в восстановительной части окислительно-восстановительных преобразований сбраживаемого субстрата восстановитель (НАД*Н2, восстановленный ферредоксин) переносит электроны на подходящий эндогенный акцептор электрона (пируват, ацетальдегид, ацетон и др.) или освобождается в виде газообразного водорода (Н2).
Согласно распространенным представлениям, наиболее древние формы жизни, источником энергии для которых служили реакции субстратного фосфорилирования, использовали органические соединения внешней среды одновременно по двум каналам: в качестве источника энергии и источника углерода. Постепенное исчерпание таких соединений из окружающей среды поставило организмы перед двумя проблемами: поиском новых источников энергии и новых источников углерода. В первом случае это привело к использованию энергии света, во втором - к использованию углекислоты.
Окислительное фосфорилирование — один из важнейших компонентов клеточного дыхания, приводящего к получению энергии в виде АТФ. Субстратами окислительного фосфорилирования служат продукты расщепления органических соединений — белки, жиры и углеводы. Процесс окислительного фосфорилирования проходит на кристах митохондрий.
Однако чаще всего в качестве субстрата используются углеводы. Так, клетки головного мозга не способны использовать для питания никакой другой субстрат, кроме углеводов.
Предварительно сложные углеводы расщепляются до простых, вплоть до образования глюкозы. Глюкоза является универсальным субстратом в процессе клеточного дыхания. Окисление глюкозы подразделяется на 3 этапа:
1. гликолиз;
2. окислительное декарбоксилирование и цикл Кребса;
3. окислительное фосфорилирование.
При этом гликолиз является общей фазой для аэробного и анаэробного дыхания.
Процесс окислительного фосфорилирования осуществляется пятым комплексом дыхательной цепи митохондрий — Протонная АТФ-синтаза, состоящая из 9 субъединиц 5 типов:
3 субъединицы (γ,δ,ε) способствуют целостности АТФ-синтазы
β субъединица является основной функциональной единицей. Она имеет 3 конформации:
L-конформация — присоединяет АДФ и Фосфат (поступают в митохондрию из цитоплазмы с помощью специальных переносчиков)
Т-конформация — к АДФ присоединяется фосфат и образуется АТФ
О-конформация — АТФ отщепляется от β-субъединицы и переходит на α-субъединицу.
Для того, чтобы субъединица изменила конформацию необходим протон, так как конформация меняется 3 раза необходимо 3 протона. Протоны перекачиваются из межмембранного пространства митохондрии под действием электрохимического потенциала.
α-субъединица транспортирует АТФ к мембранному переносчику, который «выбрасывает» АТФ в цитоплазму. Взамен из цитоплазмы этот же переносчик транспортирует АДФ. На внутренней мембране митохондрий также находится переносчик Фосфата из цитоплазмы в митохондрию, но для его работы необходим протон. Такие переносчики называются транслоказами.
14. Конструктивный метаболизм
Конструктивный метаболизм направлен на синтез четырех основных типов биополимеров: белков, нуклеиновых кислот, полисахаридов и липидов.
Ниже показана обобщенная условная схема биосинтеза сложных органических соединений, где выделены следующие основные этапы: образование из простейших неорганических веществ органических предшественников (I), из которых на следующем этапе синтезируются «строительные блоки» (II). В дальнейшем строительные блоки, связываясь друг с другом ковалентными связями, образуют биополимеры (III): Приложения (рис. № 3)
Представленная схема биосинтетических процессов не отражает всей сложности превращения низкомолекулярных предшественников в строительные блоки с большой молекулярной массой. На самом деле синтез протекает как серия последовательных реакций с образованием разнообразных промежуточных продуктов метаболизма. Кроме того, уровни развития биосинтетических способностей микроорганизмов очень различны. У одних микробов конструктивный метаболизм включает все показанные на схеме этапы, у других ограничен вторым и третьим или только третьим этапом. Именно поэтому микроорганизмы резко отличаются друг от друга по своим пищевым потребностям. Однако элементный состав пищи одинаков для всех живых организмов и должен включать все компоненты, входящие в клеточное вещество: углерод, азот, водород, кислород и др.
В зависимости от используемых в конструктивном обмене источников углерода микроорганизмы делятся на две группы: автотрофы и гетеротрофы.
Автотрофы (от греч. «autos» — сам, «trophe» — пища) в качестве единственного источника углерода используют диоксид углерода и из этого простого неорганического соединения-предшественника синтезируют все необходимые биополимеры. Способность к биосинтезу у автотрофов самая высокая.
Гетеротрофы (от греч. «heteros» — другой) нуждаются в органических источниках углерода. Их пищевые потребности чрезвычайно разнообразны. Одни из них питаются продуктами жизнедеятельности других организмов или используют отмершие растительные и животные ткани. Такие микроорганизмы называются сапрофитами (от греч. «sapros» — гнилой и «phyton» — растение). Число органических соединений, используемых ими в качестве источников углерода, чрезвычайно велико — это углеводы, спирты, органические кислоты, аминокислоты и т. д. Практически любое природное соединение может быть использовано тем или иным видом микроорганизмов в качестве источника питания или энергии.
Вторую группу гетеротрофных организмов составляют паразиты, развивающиеся в живых клетках. Паразиты, нарушая равновесие биохимических процессов в организме вызывают его заболевание. Некоторые микроорганизмы в зависимости от условий могут существовать либо как паразиты, либо как сапрофиты. Их называют условными или факультативными паразитами. К их числу относятся возбудители многих кишечных инфекций. Другие могут развиваться только в живых клетках — это строгие, или облигатные, паразиты. Способность к биосинтезу у них самая низкая.
Для синтеза клеточных белков микроорганизмам необходим азот. По отношению к источникам азотного питания среди микроорганизмов можно выделить автоаминотрофов и гетероаминотрофов. Первые способны использовать азот неорганический (аммонийный, нитратный, молекулярный) или простейшие формы органического (мочевина) и из этих соединений строить разнообразные белки своего тела. При этом все формы азота сначала переводятся в аммонийную форму. Эта наиболее восстановленная форма азота легко трансформируется в аминогруппу. Гетероаминотрофы нуждаются в органических формах азота - белках и аминокислотах. Некоторым из них требуется полный набор аминокислот, другие создают необходимые белковые соединения из одной - двух аминокислот путем их преобразования.
Многие гетеротрофные по отношению к углероду микроорганизмы являются автоаминотрофами. К ним относятся я бактерии, участвующие в очистке сточных вод.
Потребность в кислороде и водороде для конструктивного обмена микроорганизмы удовлетворяют за счет воды и органических питательных веществ. Источниками зольных элементов (P, S, K, Mg, Fe) служат соответствующие минеральные соли. Потребность в этих элементах невелика, но присутствие в среде обязательно. Помимо того, для нормальной жизнедеятельности микробов необходимы микроэлементы – Zn, Co, Cu, Ni и др. Часть их входит в состав естественного питания микробов, часть усваивается ими из минеральных солей.
Способы получения пищи, т. е. способы питания микроорганизмов, отличаются большим разнообразием. Различают три основных способа питания: голофитное, сапрозойное, голозойное.
Голофитное питание (от греч. «голо» - целиком, «фит» - растение) совершается по типу фотосинтеза растений. Такое питание присуще только автотрофам. Среди микроорганизмов этот способ свойствен водорослям, окрашенным формам жгутиковых и некоторым бактериям.
Гетеротрофные микроорганизмы питаются либо твердыми пищевыми частицами, либо поглощают растворенные органические вещества.
Голозойное питания предопределяет развитие у микроорганизмов специальных органоидов для переваривания пищи, а у некоторых - и для ее захвата. Например, неокрашенные жгутиковые и ресничные инфузории имеют ротовое отверстие, к которому пища подгоняется соответственно жгутиками или ресничками. Наиболее высокоорганизованные инфузории образуют околоротовыми ресничками ток воды в виде воронки, направленной узким концом в рот. Пищевые частицы осаждаются на дне воронки и заглатываются инфузорией. Такие инфузории называют седиментаторами. Амебы питаются путем фагоцитоза.
Микроорганизмы с голозойным способом питания для конструктивного метаболизма используют главным образом цитоплазму других организмов - бактерий, водорослей и т. д. и имеют специальные органоиды для пищеварения. Пищеварительный процесс у простейших осуществляется в пищеварительных вакуолях.
Переваривание заключается в гидролитическом расщеплении сложных органических веществ до более простых соединений. При этом углеводы гидролизуются до простых сахаров, белки - до аминокислот, а при гидролизе липидов образуются глицерин и высшие жирные кислоты. Продукты пищеварения всасываются в цитоплазму и подвергаются дальнейшему преобразованию.
Бактерии, микроскопические грибы, дрожжи не имеют специальных органоидов для захвата пищи, и она поступает в клетку через всю поверхность. Такой способ питания называется сапрозойным.
Чтобы проникнуть в клетку, питательные вещества должны находится в растворенном состоянии и иметь соответствующий размер молекул. Для многих высокомолекулярных соединений цитоплазматическая мембрана непроницаема, а некоторые из них не могут проникнуть даже через клеточную оболочку. Однако это не означает, что высокомолекулярные соединения не используются микроорганизмами как питательные вещества. Микроорганизмы синтезируют внеклеточные пищеварительные ферменты, гидролизующие сложные соединения. Таким образом, процесс пищеварения, протекающий у простейших в вакуолях, у бактерий осуществляется вне клетки (Приложения рис. 4).
Размер молекул - не единственный фактор, обусловливающий проникновение питательных веществ в клетку.
Цитоплазматическая мембрана способна пропускать одни соединения и задерживать другие.
Известно несколько механизмов переноса веществ через мембрану клетки: простая диффузия, облегченная диффузия и Активный перенос (Приложения рис. 5).
Простая диффузия - это проникновение молекул вещества в клетку без помощи каких-либо переносчиков.
В насыщении клетки питательными веществами простая диффузия большого значения не имеет. Однако именно таким путем в клетку поступают молекулы воды. Немаловажную роль в этом процессе играет осмос - диффузия молекул растворителя через полупроницаемую перепонку в направлении более концентрированного раствора.
Роль полупроницаемой перепонки в клетке выполняет цитоплазматическая мембрана. В клеточном соке растворено огромное количество молекул разнообразных веществ, поэтому клетки микроорганизмов обладают довольно высоким осмотическим давлением. Величина его у многих микробов достигает 0,5—0,8 МПа. В окружающей среде осмотическое давление обычно ниже. Это вызывает приток воды внутрь клетки и создает в ней определенное напряжение называемое тургором.
При облегченной диффузии растворенные вещества поступают в клетку с участием специальных ферментов-переносчиков, носящих название пермеаз. Они как бы захватывают молекулы растворенных веществ и переносят их к внутренней поверхности мембраны.
Простая и облегченная диффузия представляет собой варианты пассивного транспорта веществ. Движущей силой переноса веществ в клетку в этом случае служит градиент концентраций по обе стороны мембраны. Однако большинство веществ поступает в клетку против градиента концентрации. В этом случае на такой перенос затрачивается энергия и перенос называется активным. Активный перенос протекает с участием специфических белков, сопряжен с энергетическим обменом клетки и позволяет накапливать в клетке пительные вещества в концентрации во много раз больше, чем концентрация их во внешней среде. Активный перенос - основной механизм поступления питательных веществ в клетки с сапрозойным питанием.
Амфиболизм (amphibolism) – cтадия метаболизма, на которой завершается разрушение продуктов катаболизма, интермедиаты которой служат предшественниками продуктов анаболизма.
15. Молочнокислое брожение – процесс анаэробного окисления углеводов, конечным продуктом при котором выступает молочная кислота. Название получило по характеру продукта – молочной кислоте. Для молочнокислых бактерий является основным путём катаболизма углеводов и основным источником энергии в виде АТФ. Также молочнокислое брожение происходит в тканях животных в отсутствие кислорода при больших нагрузках. Белки молока являются отличным источником азотистого питания для молочнокислых бактерий, которые расщепляют молочный сахар, превращая его в молочную кислоту, повышают кислотность среды, и молоко свёртывается, образуя плотный однородный сгусток.
При молочнокислом брожении конечным продуктом является молочная кислота. Этот вид брожения осуществляется с помощью молочнокислых бактерий, которые подразделяются на две большие группы (в зависимости от характера брожения): гомоферментативные, образующие из сахара только молочную кислоту, и гетероферментативные, образующие, кроме молочной кислоты, спирт, уксусную кислоту, углекислый газ. Гомоферментативное молочнокислое брожение вызывают бактерии рода Lactobacillus и стрептококки. Они могут сбраживать различные сахара с 6-ю (гексозы) или 5-ю (пентозы) углеродными атомами, некоторые кислоты. Однако круг сбраживаемых ими продуктов ограничен. У молочнокислых бактерий нет ферментативного аппарата для использования кислорода воздуха. Кислород для них или безразличен, или угнетает развитие.
Идет согласно следующему уравнению С12H22О11 (молочный сахар) + H2O = 4С3Н6О3 (молочная кислота)
Если же сбраживается декстроза или вещества, способные переходить в декстрозу, то гидратации не происходит: С6Н12О6 = 2С3Н6О3.
Глюкоза также расщепляется до пировиноградной кислоты. Но затем ее декарбоксилирование (отщепление СO2), как при спиртовом брожении, не происходит, так как молочнокислые бактерии лишены соответствующих ферментов. У них активны дегидрогеназы (НАД). Поэтому пировиноградная кислота сама (а не уксусный альдегид, как при спиртовом брожении) принимает водород от восстановленной формы НАД и превращается в молочную кислоту. В процессе молочнокислого брожения бактерии получают энергию, необходимую им для развития в анаэробных условиях, где использование других источников энергии затруднено. Гетероферментативное молочнокислое брожение — процесс более сложный, чем гомоферментативное: сбраживание углеводов приводит к образованию ряда соединений, накапливающихся в зависимости от условий процесса брожения. Одни бактерии образуют, помимо молочной кислоты, этиловый спирт и углекислоту, другие — уксусную кислоту; некоторые гетероферментативные молочнокислые бактерии могут образовывать различные спирты, глицерин, маннит.
Виды молочнокислого брожения
Различают гомоферментативное и гетероферментативное молочнокислое брожение, в зависимости от выделяющихся продуктов помимо молочной кислоты и их процентного соотношения. Отличие также заключается и в разных путях получения пирувата при деградации углеводов гомо- и гетероферментативными молочнокислыми бактериями.
Гомоферментативное молочнокислое брожение. Поскольку расщепление лактозы происходит внутри клетки микроорганизма, ключевым этапом этого метаболического пути является поступление глюкозы в клетку. При переносе лактозы снаружи в цитоплазматическую мембрану и в клетку микроорганизма для превращения в фосфат лактозы участвуют четыре белка (последовательно: фермент II, III, I и HPr). Лактозо-6-фосфат гидролизуется β-фосфогалоктогеназой (β-Pgal) на его моносахаридные компоненты. Галактоза и глюкоза затем катаболизируются через тагатозный путь и путь Эмбдена-Мейергофа-Парнаса (EMP). Возможно дефосфорилирование галактозы, и в этом случае она неусваивается и выводится из клетки микроорганизма. В обоих случаях глюкоза и галактоза превращаются дигидроксиацетон-фосфат и глицеринальдегид-3-фосфат, где трёхуглеродные сахара окисляются дальше до фосфоенолпирувата, а затем образуют молочную кислоту при помощи лактатдегидрогеназы. Продуктом гомоферментативного молочнокислого брожения является молочная кислота, которая составляет не менее 90% всех продуктов брожения. Примеры гомоферментативных молочнокислых бактерий: Lactobacillus casei, L. acidophilus, Streptococcus lactis.
Гетероферментативное молочнокислое брожение. Лактозу и глюкозу по гетероферментативному пути образуют только бифидобактерии. При катаболизме глюкозы СО2 не образуется, поскольку отсутствует начальный этап, включающий декарбоксилирование. Лактоза транспортируется в клетку с помощью пермеазы, а затем гидролизуется в глюкозу и галактозу. Альдолаза и глюкозо-6-фосфатдегидрогеназа у этого вида отсутствуют. Гексозы подвергают катаболизму путём гексозомонофосфатного шунта с участием фруктозо-6-фосфат-фосфокетолазы. Продуктами ферментации видами Bifidobacterium являются лактат и ацетат, а ферментация двух молекул глюкозы даёт три молекулы ацетата и две молекулы лактата. Побочными продуктами являются: уксусная кислота, этанол. Примеры гетероферментативных молочнокислых бактерий: L. fermentum, L. brvis, Leuconostoc mesenteroides, Oenococcus oeni. Гетероферментативные бактерии образуют молочную кислоту иным путем. Последняя стадия — восстановление пировиноградной кислоты до молочной — та же самая, что и в случае гомоферментативного брожения. Но сама пировиноградная кислота образуется при ином расщеплении глюкозы — гексозомонофосфатном. Выход энергии гораздо меньше, чем при спиртовом брожении.
Гетероферментативные бактерии сбраживают ограниченное число веществ: некоторые гексозы (причем определенного строения), пентозы, сахароспирты и кислоты.
Молочнокислое брожение широко используется при выработке молочных продуктов: простокваши, ацидофилина, творога, сметаны. При производстве кефира, кумыса наряду с молочнокислым брожением, вызываемым бактериями, имеет место и спиртовое брожение, вызываемое дрожжами. Молочнокислое брожение происходит на первом этапе изготовления сыра, затем молочнокислые бактерии сменяются пропионовокислыми.
Молочнокислые бактерии нашли широкое применение при консервировании плодов и овощей, в силосовании кормов. Чистое молочнокислое брожение применяется для получения молочной кислоты в промышленных масштабах. Молочная кислота находит широкое применение в производстве кож, красильном деле, при выработке стиральных порошков, изготовлении пластмасс, в фармацевтической промышленности и во многих других отраслях. Молочная кислота также нужна в кондитерской промышленности и для приготовления безалкогольных напитков.
Молочнокислое брожение используется в молочной промышленности для изготовления простокваши, творога, сметаны, кефира, сливочного масла, ацидофильного молока и ацидофильной простокваши, сыров, квашеных овощей, при приготовлении хлебных заквасок, молочной кислоты. Молочнокислые бактерии широко применяют также при силосовании кормов, при выделке меховых шкурок и в производстве молочной кислоты. Большое значение эти бактерии имеют при квашении овощей, силосовании кормов (растительной массы) для животных, в хлебопечении, особенно при изготовления ржаного хлеба. Положительные результаты дают исследования по использованию молочнокислых бактерий при изготовлении некоторых сортов колбас, солено-вареных мясных изделий, а также при созревании слабосоленой рыбы для ускорения процесса и придания продуктам новых ценных качеств(вкуса, аромата, консистенции и др.).
Промышленное значение имеет также применение молочнокислых бактерий для получения молочной кислоты, которую используют в безалкогольных напитках. Спонтанно (самопроизвольно) возникающее молочнокислое брожение в продуктах (молоке, вине, пиве, безалкогольных напитках и др.) приводит к их порче (прокисанию, помутнению, ослизнению).
Применение молочнокислых бактерий в домашнем хозяйстве, сельском хозяйстве и для приготовления пищевых продуктов. Если нестерильный раствор, содержащий наряду с сахарами также сложные источники азота и факторы роста, оставить без доступа воздуха или просто налить в сосуд достаточно большое количество такого раствора, то вскоре в нем появятся молочнокислые бактерии. Они снижают рН до значений < 5 и тем самым подавляют рост других анаэробных бактерий, которые не могут развиваться в столь кислой среде. Какие именно молочнокислые бактерии вырастут в таких накопительных культурах, зависит от прочих условий. Благодаря своему стерилизующему и консервирующему действию, основанному на подкислении среды, молочнокислые бактерии используются в сельском и домашнем хозяйстве и в молочной промышленности.
Приготовление силоса. Молочнокислые бактерии, обитающие на растениях, играют большую роль при запасании впрок кормов для скота. Для приготовления силоса используют листья сахарной свеклы, кукурузу, картофель, травы и люцерну. Растительную массу прессуют и прибавляют к ней мелассу, чтобы повысить отношение C/N, и муравьиную или какую-либо неорганическую кислоту, чтобы заранее обеспечить преимущественный рост лактобацилл и стрептококков. В таких условиях происходит контролируемое молочнокислое брожение. Приготовление кислой капусты. Кислая капуста тоже представляет собой продукт, в приготовлении которого участвуют молочнокислые бактерии. В мелко нарезанной, посыпанной солью (2-3%) и спресованной белокочанной капусте при исключении доступа воздуха начинается спонтанное молочнокислое брожение, в котором принимает участие сначала Leuconostoc (с образованием CO2), а позднее Lactobacillus plantarum.
Молочные продукты. Молочнокислые бактерии, образующие кислоту и придающие продуктам определенный вкус, находят широкое применение в молочной промышленности. Стерилизованное или пастеризованное молоко или же сливки сбраживают, прибавляя в качестве закваски чистые («стартовые») культуры молочнокислых бактерий. Кисломолочное масло готовят из сливок, сквашенных с помощью Streptococcus lactis, S. cremoris и Leuconostoc cremoris. Образующийся в процессе брожения диацетил придает маслу специфический аромат. Закваски, содержащие Streptococcus lactis или Lactobacillus bulgaricus и Streptococcus thermophilus, вызывают свертывание казеина при приготовлении творога и немецких сыров (гарцского и майнцского). При изготовлении твердых сыров (в отличие от сыров из кислого молока) для свертывания казеина пользуются сычужным ферментом. Молочнокислые бактерии (Lactobacillus casei, Streptococcus lactis) вместе с пропио-новокислыми участвуют лишь на стадии созревания сыров.
Для приготовления молочнокислых продуктов в качестве заквасок тоже используются стартовые культуры молочнокислых бактерий, образующих кислоту и некоторые вещества, придающие продукту характерный запах. Ароматное пахтанье получают с помощью упомянутых выше заквасок, применяемых для приготовления кисломолочного масла. Пахтанье наряду с молочной кислотой содержит также уксусную кислоту, ацетоин и диацетил. Йогурт получают из пастеризованного гомогенизированного цельного молока, инокулированного Streptococcus thermophilus и Lactobacillus bulgaricus (после внесения закваски молоко выдерживают 2-3 ч при 43-45°С). Под названием биогурт в продажу поступает кислое молоко, сквашенное Lactobacillus acidophilus и Streptococcus thermophilus. Кефир принадлежит к молочнокислым продуктам, содержащим кислоты и этанол; его получают из молока (коровьего, овечьего или козьего). Закваску готовят на так называемых кефирных зернах, которые состоят из пока еще не полностью изученного сообщества организмов, включающего лактобациллы, стрептококки, микрококки и дрожжи. Сквашивание молока ведут при 15-22°С в течение 24-36 ч. Для приготовления кумыса используют ослиное молоко, которое инокулируют культурой, содержащей Lactobacillus bulgaricus и дрожжи рода Torula. Чистую молочную кислоту, которая используется для различных промышленных целей и как добавка к пищевым продуктам, получают в результате брожения. Молоко или сыворотку сбраживают при помощи lactobacillus casei или L. bulgaricus. Для сбраживания глюкозы и мальтозы применяют L. delbruckii, L. leichmannii или Sporolactobacillus inulinus. Источником необходимых факторов роста служат меласса и солод.
Образование кислоты в кислом тесте, используемой для его подъема, тоже обеспечивается молочнокислыми бактериями, в частности Lactobacillus plantarum и L. coryneformis. Стартовые культуры лактобацилл и микрококков применяются также для приготовления сырокопченых колбас (салями, сервелат). Образуя молочную кислоту и снижая рН, молочнокислые бактерии предохраняют от порчи те виды колбас, которые не подвергаются варке.
16. Уксуснокислым брожением называется окисление этилового спирта в уксусную кислоту под влиянием уксуснокислых бактерий.
Оно может быть выражено таким суммарным уравнением:
С2Н5ОН + О2 = СН3СООН + Н2О
Это брожение, как и спиртовое, известно с давних времен. Человек с давних пор наблюдал, что на поверхности вина или пива, оставленных в открытом сосуде, образуется сероватая пленка, а содержимое превращается в уксус. Микробиологическая природа этого процесса была впервые установлена в 1862 г. Пастером.
Возбудителями уксуснокислого брожения являются уксуснокислые бактерии, составляющие многочисленную группу палочковидных, бесспоровых, аэробных бактерий. Среди них встречаются подвижные и неподвижные формы. Различаются они также размерами клеток, разной устойчивостью к спирту и способностью накапливать больше или меньше уксусной кислоты.
Уксуснокислые бактерии выдерживают концентрацию спирта в 10-12% и образуют в среде от 6 до 11,5% уксуса.
Оптимальная температура их развития колеблется в пределах 20-35°С. Уксуснокислые бактерии могут соединяться в длинные нити или образовывать пленки на поверхности субстрата. Они широко распространены в природе и встречаются на зрелых ягодах, плодах, в вине, пиве, квасе, квашеных овощах и т. д.
На практике уксуснокислое брожение используется для получения уксуса.
Исходным субстратом для получения уксуса служит виноградное или плодово-ягодное вино, а чаще всего - раствор, содержащий спирт и подкисленный уксусом с целью создания благоприятных условий уксуснокислым бактериям. В такой раствор добавляют также необходимые для бактерий минеральные соли и другие питательные вещества.
После брожения содержание уксусной кислоты в субстрате может доходить до 9%. Такой уксус разбавляют до содержания 4,5-6% уксусной кислоты, а затем направляют в продажу.
17. При спиртовом брожении микроорганизмы превращают углеводы с образованием этилового спирта как основного продукта брожения:
С6 Н12О6= 2СН3СН2ОН + 2СО2
К возбудителям спиртового брожения относятся некоторые дрожжи, главным образом из рода Saccharomyces (S. cerevisiae, S. globosus, S. vini и др.). В небольших количествах спирт может накапливаться в среде, содержащей углеводы, при развитии в ней некоторых грибов из родов Mucor и Fusarium и бактерий (Zymomonas mobilis, Sarcina ventriculi, Erwinia amylovora и др.).
При доступе кислорода воздуха дрожжи, вызывающие брожение, начинают окислять углеводы, то есть от брожения переходят к процессу аэробного дыхания. В этом случае коэффициент использования углеводов увеличивается. Поэтому для получения большей массы дрожжей, например при производстве пекарских дрожжей, питательную среду, в которой происходит их размножение, аэрируют.
Наоборот, при производстве спирта процесс ведется в анаэробных условиях.
Сбраживание сахаров дрожжами с образованием этилового спирта и СО2 идет по пути Эмбдена — Мейергофа — Парнаса. Кроме этилового спирта, в процессе спиртового брожения образуются так называемые сивушные масла — амиловый, изоамиловый, бутиловый, изобутиловый и другие спирты, являющиеся побочными продуктами обмена некоторых аминокислот — изолейцина, лейцина и валина.
Обычно спиртовое брожение протекает при кислой реакции среды (pH 4—5). Если реакцию питательного субстрата поддерживать на щелочном уровне (pH около 8), то одним из основных продуктов брожения будет глицерин. В этом случае спиртовое брожение выражается следующим; уравнением:
2С6Н12О6 + Н20 --= СН 3СООН - СН3СН2ОН + 2СН2ОНСНОНСН2ОН + 2С02
Еще более резко повышается выход глицерина, если брожение протекает в присутствии сульфита натрия Na2S03. При этом уксусный альдегид связывается сульфитом и не может быть восстановлен водородом в этиловый спирт. Акцептором водорода служит промежуточное соединение диоксиацетонфосфат, который превращается сначала в фосфоглицерин, а после отщепления фосфатной группы образуется глицерин.
В некоторых случаях бывает целесообразно получать глицерин и амиловый спирт с помощью спиртового брожения. Подобные производства были осуществлены практически.
Не все сахара сбраживаются дрожжами. Гексозы обычно усваиваются хорошо, но пентозы могут ассимилироваться лишь весьма ограниченным числом видов дрожжей. Неплохо используются дрожжами дисахариды, но каждый вид этих микроорганизмов способен ассимилировать лишь строго определенный их набор. Перец сбраживанием более сложные сахара под влиянием ферментов дрожжевой клетки распадаются на моносахариды.
Некоторые дрожжи могут усваивать простые декстрины, но крахмал не сбраживают. Лишь после предварительного осахаривания с помощью солода (или другими способами) крахмал становится пригодным для спиртового брожения. На многих заводах для спиртового брожения используют клетчатку, предварительно подвергая ее кислотному гидролизу.
В аэробных условиях дрожжи способны окислять органические кислоты и другие соединения. В качестве источника азотного питания дрожжи потребляют белки, пептоны, аминокислоты, а также аммонийные соли. Дрожжевая клетка вырабатывает многие витамины, а присутствие некоторых ростовых веществ в среде усиливает рост дрожжей. Дрожжи развиваются в относительно широком температурном диапазоне (от 3—5 до 38—40°С).
В процессах брожения могут участвовать низовые и верховые дрожжи. Последних используют для брожения, протекающего при температуре 18—30°С. В этих условиях обычно отмечают обильное выделение углекислоты и пенообразование. Сами дрожжи поднимаются на поверхность бродящей жидкости. Верховые дрожжи, чаще всего расы Saccharomyces cerevisiae, используют в спиртовой промышленности, хлебопечениии т. д., но при некоторых условиях употребляет и другие дрожжи.
Низовые дрожжи применяют для брожения при пониженной температуре (4—10°С). При этом брожение совершается спокойно, и масса дрожжевых клеток остается на дне сосуда. Низовые дрожжи часто используют в пивоваренной промышленности, где обычно применяют также расы Saccharomyces cerevisiae, адаптированные, однако, к жизнедеятельности при пониженной температуре. В виноделии важную роль играют дрожжи рас Saccharomyces vini, S. cerevisiae var. ellipsoides.
Дрожжи могут расти при нейтральной реакции среды, но активнее процессы брожения проходят при некотором ее подкислении. Поэтому в практике для размножения дрожжей создают кислую среду, что также предупреждает развитие посторонней бактериальной микрофлоры, плохо переносящей пониженные pH.
Значение спиртового брожения очень велико. Этот процесс лежит в основе виноделия, пивоварения, производства спирта, хлебопечения. В этих отраслях промышленности широко используют чистые культуры дрожжей, обеспечивающие более правильное течение процесса и повышающие качество продукции.
Дрожжи и близкие к ним организмы используют и для приготовления кормового белка. Культивируя их на средах с дешевым источником углеродного питания (например, на мелассе, отходах целлюлозной или текстильной промышленности, метаноле, этаноле и др.), удается получать значительную массу дрожжей, содержащих полноценный белок. Дрожжи сепарируют и используют для кормовых целей. В последнее время разработан способ выращивания кормовых дрожжей на отходах нефтяной промышленности.
Некоторые виды дрожжей, как и другие микроорганизмы, накапливают в своих клетках большое количество жира. Подобные дрожжи, получившие техническое название «жировые», предложено применять для получения микробиологическим путем жиров, обладающих ценными техническими свойствами. Существуют дрожжи, которые накапливают значительные количества витаминов, на основе чего их используют в производстве витаминов для медицины и сельского хозяйства.
Не все дрожжи приносят пользу человеку, многие способны вызывать только окисление углеводов. Среди небродящих дрожжей имеются вредители пищевых продуктов и вина.
Дрожжи широко распространены в природе — в почвах, на поверхности растений и т. д.
Применение спиртового брожения сходно с применением дрожжей: пивоварение, квасоварение, приготовление дрожжевого теста, виноделие и производство других алкогольных напитков.
18. При маслянокислом брожении происходит процесс разложения сахара под действием бактерий в анаэробных условиях с образованием масляной кислоты, углекислого газа и водорода. Оно протекает по уравнению:
С6Н12О6 = С3Н7СООН + 2СО2 + 2Н2 + 20 ккал
В качестве побочных продуктов при этом получаются этиловый и бутиловый спирты, уксусная кислота и др. Такое брожение может протекать в молоке и молочных продуктах, придавая им неприятные вкус и запах, характерные для масляной кислоты. Маслянокислые бактерии, вызывающие это брожение, представляют собой перитрихиально жгутованные подвижные, спорообразующие палочки, температурный оптимум их развития находится в пределах 30-40°С. Они являются строгими анаэробами и могут размножаться только при полном отсутствии кислорода воздуха или при очень незначительном его содержании. Споры, образуемые маслянокислыми бактериями, весьма устойчивы к неблагоприятным воздействиям, выдерживают кипячение в течение нескольких минут и погибают только при длительной стерилизации. Располагаются они либо в середине, либо ближе к одному из концов клетки, придавая ей форму веретена или теннисной ракетки.
Маслянокислые бактерии способны сбраживать как простые сахара, так и более сложные углеводы - крахмал, пектиновые вещества и другие, а также глицерин. Эти бактерии широко распространены в природе, находясь в почве, в иле озер, прудов и болот, в скоплениях различных остатков и отбросов, навозе, загрязненной воде, молоке, сыре и т. д. Вызываемое этими бактериями брожение имеет важное значение в превращениях веществ в природе.
В народном хозяйстве маслянокислое брожение может принести большой вред, так как маслянокислые бактерии способны вызывать массовую гибель картофеля и овощей, прогоркание молока и вспучивание сыров, порчу консервов и т. д.
На маслянокислые бактерии подавляюще действует кислая реакция среды, поэтому там, где развиваются молочнокислые бактерии, выделяющие молочную кислоту, жизнедеятельность маслянокислых бактерий приостанавливается. Если же в заквашенных овощах медленно накапливается молочная кислота, то они могут быть испорчены в результате размножения в них маслянокислых бактерий. Эти бактерии вызывают порчу пастеризованного молока, в котором исключено молочнокислое брожение, а также сырого молока при длительном хранении его на холоде, когда деятельность молочнокислых бактерий ослаблена.
Развиваясь во влажной муке, маслянокислые бактерии придают ей прогорклый вкус. Маслянокислое брожение находит практическое применение в производстве масляной кислоты, которая широко используется в технике. Важная сфера возникновения такого брожения — разложение мертвых тел живых организмов
19. Рост и размножение
Термин «рост» означает увеличение цитоплазматической массы отдельной клетки или группы бактерий в результате синтеза клеточного материала (например, белка, РНК, ДНК). Достигнув определенных размеров, клетка прекращает рост и начинает размножаться.
Под размножением микробов подразумевают способность их к самовоспроизведению, увеличению количества особей на единицу объема. Иначе можно сказать: размножение — это повышение числа особей микробной популяции.
Бактерии размножаются преимущественно простым поперечным делением (вегетативное размножение), которое происходит в различных плоскостях, с образованием многообразных сочетаний клеток (кисть винограда — стафилококки, цепочки — стрептококки, соединения по парам — диплококки, тюки, пакеты — сарцины и др.). Процесс деления состоит из ряда последовательных этапов. Первый этап начинается формированием в средней части клетки поперечной перегородки (рис. 6), состоящей вначале из цитоплазматической мембраны, которая делит цитоплазму материнской клетки на две дочерние. Параллельно с этим синтезируется клеточная стенка, образующая полноценную перегородку между двумя дочерними. В процессе деления бактерий важным условием является репликация (удвоение) ДНК, которая осуществляется ферментами ДНК-полимеразами. При удвоении ДНК происходит разрыв водородных связей и образование двух спиралей ДНК, каждая из которых находится в дочерних клетках. Далее дочерние односпиральные ДНК восстанавливают водородные связи и вновь образуют двуспиральные ДНК.
Репликация ДНК и деление клеток происходит с определенной скоростью, присущей каждому виду микроба, что зависит от возраста культуры и характера питательной среды. Например, скорость роста кишечной палочки колеблется от 16 до 20 мин; у микобактерий туберкулеза деление наступает лишь через 18—20 ч; для клетки культуры тканей млекопитающих требуются сутки. Следовательно, бактерии большинства видов размножаются почти в 100 раз быстрее, чем клетки культуры тканей.
Типы деления клеток бактерий. 1. Клеточное деление опережает разделение, что приводит к образованию «многоклеточных» палочек и кокков. 2. Синхронное клеточное деление, при котором разделение и деление нуклеоида сопровождаются образованием одноклеточных организмов. 3. Деление нуклеоида опережает клеточное деление, обусловливая образование многонуклеоидных бактерий.
Разделение бактерий, в свою очередь, происходит тремя способами: 1) разламывающее разделение, когда две индивидуальные клетки, неоднократно переламываясь в месте сочленения, разрывают цитоплазматический мостик и отталкиваются друг от друга, при этом образуются цепочки (сибиреязвенные бациллы); 2) скользящее разделение, при котором после деления клетки обособляются и одна из них скользит по поверхности другой (отдельные формы эшерихий); 3) секущее разделение, когда одна из разделившихся клеток свободным концом описывают дугу круга, центром которого является точка ее контакта с другой клеткой, образуя римскую пятерку или клинопись (коринебактерии дифтерии, л истерии).
Фазы развития бактериальной популяции. Теоретически допускается, что если бактериям создать условия непрерывного притока и прогрессивного увеличения массы свежей питательной среды и оттока продуктов выделения, то размножение будет возрастать логарифмически, а гибель арифметически.
Общую закономерность роста и размножения бактериальной популяции принято показывать графически в виде кривой, которая отражает зависимость логарифма числа живых клеток от времени. Типичная кривая роста имеет S-образную форму и позволяет различать несколько фаз роста, сменяющих друг друга в определенной последовательности:
1. Исходная (стационарная, латентная, или фаза покоя). Представляет собой время от момента посева бактерий на питательную среду до их роста. В этой фазе число живых бактерий не увеличивается, а может даже уменьшаться. Продолжительность исходной фазы 1—2 ч.
2. Фаза задержки размножения. В течение этой фазы бактериальные клетки интенсивно растут, но слабо размножаются. Период этой фазы занимает около 2 ч и зависит от ряда условий: возраста культуры (молодые культуры приспосабливаются быстрее, чем старые); биологических особенностей микробных клеток (для бактерии кишечной группы характерен короткий период приспособления, для микобактерий туберкулеза — длительный); полноценности питательной среды, температуры выращивания, концентрации СО2, рН, степени аэрации среды, оксилительно-восстановительного потенциала и др. Нередко обе фазы объединяют термином «лаг-фаза» (англ. lag — отставание, запаздывание).
3. Логарифмическая фаза. В этой фазе скорость размножения клеток и увеличение бактериальной популяции максимальны. Период генерации (лат. generatio — рождение, воспроизведение), т. е. время, прошедшее между двумя последовательными делениями бактерий, в этой стадии будет постоянным для данного вида, а количество бактерий станет удваиваться в геометрической прогрессии. Это означает, что в конце первой генерации из одной клетки формируются две, в конце второй генерации обе бактерии, разделяясь, образуют четыре, из полученных четырех формируются восемь и т. д. Следовательно, после n генераций количество клеток в культуре будет равно 2n. Длительность логарифмической фазы составляет 5—6 ч.
4. Фаза отрицательного ускорения. Скорость размножения бактерий перестает быть максимальной, число делящихся особей уменьшается, а число погибших увеличивается (длительность около 2 ч). Одна из возможных причин, замедляющих размножение бактерий, — истощение питательной среды, т. е. исчезновение из нее веществ, специфических для данного бактериального вида.
5. Стационарная фаза максимума. В ней число новых бактерий почти равно числу отмерших, т. е. наступает равновесие между погибшими клетками и вновь образующимися. Продолжается эта фаза 2 ч.
6. Фаза ускорения гибели. Характеризуется прогрессивным превосходством числа погибших клеток над количеством вновь нарождающихся. Длится она около 3 ч.
7. Фаза логарифмической гибели. Отмирание клеток происходит с постоянной скоростью (длительность около 5 ч).
8. Фаза уменьшения скорости отмирания. Остающиеся в живых клетки переходят в состояние покоя.
20. При периодическом способе культивирования популяция микроорганизмов проходит 7 стадий (фаз) роста 1. Лагфаза. В этот период культура адаптируется к новой среде обитания. Активизируются ферментные системы, возрастает количество нуклеиновых кислот, клетка готовится к интенсивному синтезу белков и других соединений. Клетки не размножаются (скорость размножения равна нулю). Концентрация живых клеток постоянна и равна количеству внесенных клеток. Продолжительность этой фазы зависит от физиологических особенностей микроорганизма и от состава питательной среды.
2. Фаза ускорения роста. Эта фаза характеризуется началом деления клеток, увеличением общей массы и постоянным увеличением скорости роста культуры. Эта фаза обычно непродолжительна.
3. Экспоненциальная (логарифмическая) фаза роста. В этот период микроорганизмы размножаются с постоянной максимальной скоростью. При этом логарифм числа клеток линейно зависит от времени. К концу этой фазы среда истощается вследствие катаболических и анаболических процессов, в среде накапливаются продукты жизнедеятельности микроорганизмов. Возникает и пространственная ограниченность, так как клетки мешают друг другу.
4. Фаза замедления роста. В этот период снижается скорость роста, небольшая часть клеток гибнет. Скорость роста выше скорости отмирания.
5. Стационарная фаза. Количество живых клеток достигает максимума. Скорость роста равна скорости отмирания клеток, поэтому концентрация жизнеспособных клеток остается постоянной.
6. Фаза ускорения отмирания. Количество отмерших клеток (скорость отмирания) становится больше количества образовавшихся клеток.
7. Фаза отмирания. Масса живых клеток значительно уменьшается, так как в среде нет питательных веществ, а запасные вещества клетки исчерпываются.
При непрерывном способе культивирования культура поддерживается в какой-то фазе роста.
Если цель культивирования – получение биомассы продуцента, процесс целесообразно вести в режиме логарифмической фазы, когда микроорганизм способен обеспечить максимальную скорость роста популяции.
Для поддержания культуры в логарифмической фазе культивирование микробной популяции проводят в условиях хемостата или турбидостата.
Рост в хемостате. Хемостат состоит из сосуда, в который вводят с постоянной скоростью питательный раствор. По мере поступления питательного раствора из него вытекает суспензия микроорганизмов с той же скоростью. При культивировании в условиях хемостата поддерживается постоянная концентрация одного из компонентов среды (например, углерода). Благодаря этому в условиях хемостата поддерживается постоянная скорость роста культуры. Культура микроорганизма находится в условиях динамического равновесия.
Рост в турбидостате. Работа турбидостата основана на поддержании постоянной концентрации живых клеток. В сосуде для культивирования все питательные вещества содержатся в избытке, а скорость роста бактерий приближается к максимальной.
Если же целью культивирования является получение метаболтта (например, этилового спирта), выход которого в среду обитания не соответствует логарифмической фазе роста, применяется способ непрерывного выращивания в двух или нескольких последовательно соединенных аппаратах, что позволяет как бы расчленить процесс на несколько стадий.
21. Накопительные культуры. Метод накопительных культур и в принципе, и на практике очень прост. Для накопления нужны такие условия, при которых данный организм преодолевает конкуренцию остальных. Подбирая ряд факторов (источники энергии, углерода, азота, акцепторы электронов, газовую атмосферу, освещенность, температуру, рН и т.д.), создают определенные условия и инокулируют среду смешанной популяцией, какая имеется, например, в почве или в иле. Наиболее приспособленный к такой среде микроорганизм растет и вытесняет все остальные, сопутствующие организмы. Путем многократных пересевов в такую же жидкую среду и посева на твердую среду того же состава можно без труда выделить преобладающий (накопленный) штамм. Частый пересев с жидкой среды на жидкую предотвращает рост сопутствующих организмов, которые могли бы использовать продукты выделения или даже автолиза клеток первичной культуры. Лучшим материалом для инокуляции служат пробы из тех мест, где уже имеется «естественное обогащение». Можно, например, выделять микроорганизмы, использующие окись углерода, из сточных вод газовых заводов; использующие гемоглобин-из сточных вод боен, а те, которые окисляют углеводороды,-из почвы на нефтепромыслах или из нефтяных отстойников.
Элективные культуры, клетки микроорганизмов, выращенные на избирательных (элективных) питательных средах. Предложены русским микробиологом С. Н. Виноградским. Благодаря специально подобранному составу элективных сред создаются условия, благоприятные для преимущественного роста микроорганизмов с определёнными физиологическими свойствами. Например, при посеве почвы, воды или грунта водоёмов в питательную среду, в состав которой входят глюкоза и ряд минеральных солей, но отсутствуют соединения, содержащие азот, на ней начинают расти азотфиксирующие микроорганизмы. Э. к. бактерий, разлагающих целлюлозу, получают на питательной среде, содержащей в качестве единственного источника углерода целлюлозу. Выделению чистых культур этих микробов всегда предшествует получение их Э. к. В присутствии факторов роста (витаминов, аминокислот и др.) Э. к. могут быть получены при внесении в питательную среду меньшего количества клеток бактерий, что позволяет обнаруживать в почве и воде в 4—10 раз больше микробов, чем при посевах на среды без факторов роста.
22 Основные типы пит. сред
По исходным компонентам:
- натуральные среды — готовят из продуктов животного и растительного происхождения(мясо, костная и рыбная мука, кормовые дрожжи, сгустки крови и др.)
- синтетические среды — готовят из определённых химически чистых органических и неорганических соединений, взятых в точно указанных концентрациях и растворённых в дважды дистиллированной воде.
- По консистенции(степени плотности):
- жидкие
- полужидкие
- плотные
Плотные и полужидкие среды готовят из жидких, к которым прибавляют агар-агар или желатин. Кроме того, в качестве плотных сред применяют свёрнутую сыворотку крови, свёрнутые яйца, картофель, среды с силикагелем. Некоторые микроорганизмы используют желатин как питательное вещество — при их росте среда разжижается.
- По составу:
- простые: мясопептонный бульон(МПБ), мясопептонный агар(МПА),, питательный желатин,
- сложные — готовят прибавляя к простым средам кровь, сыворотку, углеводы и другие вещества.
- По назначению:
- основные — служат для культивирования большинства патогенных микробов. МПБ, МПА, бульон и агар Хоттингера, пептонная вода.
- специальные — служат для выделения и выращивания микроорганизмов, не растущих на простых средах.
- элективные(избирательные) — служат для выделения определённого вида микробов, росту которых они благоприятствуют, задерживая или подавляя рост сопутствующих микроорганизмов. Среды становятся элективными при добавлении к ним определённых антибиотиков, солей, изменения pH.Жидкие элективные среды называют средами накопления.
- дифференциально-диагностические — позволяют отличить один вид микробов от другого по ферментативной активности.
- консервирующие — предназначены для первичного посева и транспортировки исследуемого материала.
Для культивирования анаэробных микроорганизмов необходимо создание бескислородных условий, достигаемое различными методами.
Физические методы основаны на создании вакуума в специальных аппаратах — анаэростатах. Иногда воздух в них заменяют каким-либо другим газом, например СО2. Доступ кислорода в питательную среду можно затруднить, если культивировать анаэробов в глубине столбика сахарного агара или среды Вильсона — Блера, налитых в пробирки в расплавленном состоянии и остуженных до 43°С. По методу Вейона — Виньяля расплавленный и остуженный агар с посевным материалом набирают в стеклянные трубочки, которые запаивают с двух концов.
Химические методы заключаются в том, что при культивировании исследуемого материала на плотных средах в эксикатор помещают химические вещества, например пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода. В жидкие питательные среды можно добавлять различные редуцирующие вещества: аскорбиновую или тиогликолевую кислоту.
Биологический метод основан на одновременном культивировании аэробов и анаэробов на плотных питательных средах в чашках Петри, герметически закупоренных. Вначале кислород поглощается растущими аэробами, посеянными на одной половине среды, а затем начинается рост анаэробов, посев которых сделан на другой половине. Наиболее удобна для культивирования анаэробов специальная среда Китта — Тароцци. В нее входят сахарный МПБ, который наливают в пробирки в количестве 10—12 мл, и кусочки вареных паренхиматозных органов. Перед употреблением среду Китта,— Тароцци кипятят на водяной бане для удаления растворенного в ней кислорода. Среду заливают сверху стерильным вазелиновым маслом. Заметный рост анаэробов (помутнение) может наблюдаться через 48 ч и более в зависимости от количества посевного материала.
Рост изолированных колоний анаэробов можно получить при рассеве исследуемого материала по поверхности кровяно-сахарного агара, разлитого в чашки Петри. После посева чашки помещают в анаэростат. Исследуемый материал в убывающей концентрации можно засевать в высокий столбик агара. Образовавшиеся отдельные колонии анаэробов выделяют, распилив пробирку в месте роста. Колонии анаэробов для получения значительного количества биомассы отсевают затем на среду Китта — Тароцци. В качестве источника энергии для анаэробов используют глюкозу, добавление которой в питательную среду обязательно.
Культивирование аэробных микроорганизмов проводят следующим образом:
на поверхности плотных сред или в тонком слое жидких сред, когда микроорганизмы получают кислород непосредственно из воздуха;
в жидких средах (глубинное культивирование). В этом случае микроорганизмы используют растворенный в среде кислород. В связи с низкой растворимостью кислорода, для обеспечения роста аэробных бактерий в толще среды, требуется постоянное аэрирование.
23.
Дата добавления: 2015-09-03 | Просмотры: 1330 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|