Основное назначение лейкоцитов — участие в защитных реакциях организма против чужеродных агентов, способных нанести ему вред. Различают специфическую защиту, или иммунитет, и неспецифическую резистентность организма. Последняя, в отличие от иммунитета, направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноцитоз, система комплемента, естественная цитотоксичность, действие интерферонов лизоцима, β-лизинов и других гуморальных факторов защиты.
Фагоцитоз. Это поглощение чужеродных частиц или клеток и их дальнейшее уничтожение. Явление фагоцитоза открыто И. И. Мечниковым, за что ему была присуждена Нобелевская премия 1908 г. Фагоцитоз присущ нейтрофилам, эозинофилам, моноцитам и макрофагам.
И. И. Мечников выделил следующие стадии фагоцитоза: 1) приближение фагоцита к фагоцитируемому объекту, или лиганду; 2) контакт лиганда с мембраной фагоцита; 3) поглощение лиганда; 4) переваривание или уничтожение фагоцитированного объекта.
Всем фагоцитам присуща амебовидная подвижность. Сцепление с субстратом, к которому движется лейкоцит, носит название адгезии. Только фиксированные, или адгезированные, лейкоциты способны к фагоцитозу.
Фагоцит может улавливать отдаленные сигналы (хемотаксис) и мигрировать в их направлении (хемокинез). Хотя сотни продуктов метаболизма влияют на подвижность лейкоцитов, их действие проявляется лишь в присутствии особых соединений — хемоаттрактантов. К хемоаттрактантам относят продукты распада соединительной ткани, иммуноглобулинов, фрагменты активных компонентов комплемента, некоторые факторы свертывания крови и фибринолиза, простагландины, лейкотриены, лимфокины и монокины. Благодаря хемотаксису, фагоцит целенаправленно движется в сторону повреждающего агента. Чем выше концентрация хемоаттрактанта, тем большее число фагоцитов устремляется в зону повреждения и тем с большей скоростью они движутся. Для взаимодействия с хемоаттрактантом у фагоцита имеются специфические гликопротеиновые образования — рецепторы; их число на одном нейтрофиле достигает 2 • 103—2 • 105. Движение фагоцитов осуществляется в результате взаимодействия актина и миозина и сопровождается выдвижением псевдоподий, которые служат точкой опоры при перемещении фагоцита. Прикрепляясь к субстрату, псевдоподия перетягивает фагоцит на новое место.
Двигаясь таким образом, лейкоцит проходит через эндотелий капилляра; прилипая к сосудистой стенке, он выпускает псевдоподию, которая пронизывает стенку сосуда. В этот выступ постепенно «переливается» тело лейкоцита. После этого лейкоцит отделяется от стенки сосуда и может передвигаться в тканях.
Контакт фагоцита с фагоцитируемым объектом может быть обусловлен разностью электрических зарядов, повышенной степенью гидрофобности или гидрофильностью лиганда, наличием на его поверхности лектинов, способных специфически связываться с мембранной манозой или инсулином макрофага. В большинстве случаев контакт опосредуется особыми соединениями — опсонинами, значительно усиливающими фагоцитоз. К последним относятся иммунные комплексы, некоторые фрагменты системы комплемента (см. раздел 6.2.2.6), С-реактивный белок, агрегированные белки, фибронектины и др. Наиболее детально опосредованный фагоцитоз изучен с участием гликопротеина фибронектина (молекулярная масса 440 000), обладающего значительной клейкостью, что облегчает взаимодействие фагоцита и лиганда. Фибронектин находится в нерастворимой форме в соединительной ткани и в растворимой — в α2-глобулиновой фракции плазмы. Кроме того, во взаимодействии фагоцита и фагоцитируемого объекта принимают участие близкий по строению к- фибронектину белок ламинин, а также ионы Са2+ и Mg2+. Эта реакция обеспечивается наличием на мембране фагоцитов специфических рецепторов.
Как только лиганд взаимодействует с рецептором, наступает конформация последнего и сигнал передается на фермент, связанный с рецептором в единый комплекс, благодаря чему осуществляется поглощение фагоцитируемого объекта.
Существует несколько механизмов поглощения, но все они сводятся к тому, что лиганд оказывается заключенным в мембрану фагоцита. Образующаяся при этом фагосома передвигается к центру клетки, где сливается с лизосомами, в результате чего появляется фаголизосома. В последней, фагоцитируемый объект может погибнуть. Это так называемый завершенный фагоцитоз. Но нередко встречается незавершенный фагоцитоз, когда фагоцитируемый объект может жить и развиваться в фагоците. Подобное явление наблюдается при некоторых инфекционных заболеваниях — туберкулезе, гонорее, менингококковой и вирусной инфекциях.
Последняя стадия фагоцитоза — уничтожение лиганда. Основным «оружием» фагоцитов являются продукты частичного восстановления кислорода — пероксид водорода, и свободные радикалы. Они вызывают пероксидное окисление липидов, белков и нуклеиновых кислот, благодаря чему повреждается мембрана клетки.
В момент контакта рецепторов с фагоцитируемым объектом наступает активация оксидаз — мембранных ферментов, переносящих электроны на кислород и отнимающих их у восстановленных молекул. При образовании фаголизосомы происходит резкое усиление окислительных процессов внутри нее, в результате чего наступает гибель бактерий.
В процессе фагоцитоза утилизируемый клетками кислород превращается в супероксидный анион-радикал (О2-). В результате окисления НАДФ*Н2 усиленно генерируется пероксид водорода, которому присуще сильное окислительное действие. Фагоциты обладают универсальным свойством высвобождать супероксидные радикалы, прежде всего О2-.
На фагоцитируемый объект, заключенный в фагосому или фаголизосому, по системе микротрубочек изливаются содержимое гранул, а также образовавшиеся метаболиты. В частности, миелопероксидаза нейтрофилов, окисляя мембранные белки, способна инактивировать грамположительные и грамотрицательные бактерии, вирусы, грибки, микоплазмы при обязательном участии галогенов (анионов Сl- и пероксида водорода (Н2О2). В уничтожении бактерий внутри фагоцита принимает участие фермент лизоцим (мурамидаза), вызывающий гидролиз гликопротеидов оболочки. В гранулоцитах содержится уникальная субстанция — фагоцитин, обладающая антибактериальным действием и способная уничтожить грамотрицательную и грамположительную микрофлору.
К другим механизмам, приводящим к гибели фагоцитируемого объекта, относятся действие катионных белков, меняющих поверхностные свойства мембраны; влияние лактоферрина, конкурирующего за ионы железа; действие различных амилолитических, протеолитических и липолитических ферментов, содержащихся в гранулах фагоцитов и разрушающих мембрану бактерий и вирусов.
Система комплемента. Комплемент — ферментная система, состоящая более чем из 20 белков, играющая важную роль в осуществлении защитных реакций, течении воспаления и разрушения (лизиса) мембран бактерий и различных клеток.
При активации системы комплемента усиливается разрушение чужеродных и старых клеток, активируются фагоцитоз и течение иммунных реакций, повышается проницаемость сосудистой стенки, ускоряется свертывание крови, что в конечном итоге приводит к более быстрой ликвидации патологического процесса.
Иммунитет. Это комплекс реакций, направленных на поддержание гомеостаза при встрече организма с агентами, которые расцениваются как чужеродные независимо от того, образуются ли они в самом организме или поступают в него извне.
Чужеродные для данного организма соединения, способные вызывать иммунный ответ, получили наименование «антигены» (АГ). Теоретически любая молекула может быть АГ. В результате действия АГ в организме образуются антитела (AT), сенсибилизируются (активируются) лимфоциты, благодаря чему они приобретают способность принимать участие в иммунном ответе. Специфичность АГ заключается в том, что он избирательно реагирует с определенными AT или лимфоцитами, появляющимися после попадания АГ в организм.
Способность АГ вызывать специфический иммунный ответ обусловлена наличием на его молекуле многочисленных детерминант (эпитопов), к которым специфически, как ключ к замку, подходят активные центры (антидетерминанты) образующихся AT. АГ, взаимодействуя со своими AT, образуют иммунные комплексы (ИК). Как правило, АГ — это молекулы с высокой молекулярной массой; существуют потенциально активные в иммунологическом отношении вещества, величина молекулы которых соответствует одной отдельной антигенной детерминанте. Такие молекулы носят наименование гаптенов. Последние способны вызывать иммунный ответ, только соединяясь с полным АГ, т. е. белком.
Органы, принимающие участие в иммунитете, делят на четыре группы.
1. Центральные — тимус, или вилочковая железа, и, по-видимому, костный мозг.
2. Периферические, или вторичные, — лимфатические узлы, селезенка, система лимфоэпителиальных образований, расположенных в слизистых оболочках различных органов.
3. Забарьерные — ЦНС, семенники, глаза, паренхима тимуса и при беременности — плод.
4. Внутрибарьерные — кожа.
Различают клеточный и гуморальный иммунитет. Клеточный иммунитет направлен на уничтожение чужеродных клеток и тканей и обусловлен действием Т-киллеров. Типичным примером клеточного иммунитета является реакция отторжения чужеродных органов и тканей, в частности кожи, пересаженной от человека человеку.
Гуморальный иммунитет обеспечивается образованием AT и обусловлен в основном функцией В-лимфоцитов.
Иммунный ответ. В иммунном ответе принимают участие иммунокомпетентные клетки, которые могут быть разделены на антигенпрезентирующие (представляющие АГ), регуляторные (регулирующие течение иммунных реакций) и эффекторы иммунного ответа (осуществляющие заключительный этап в борьбе с АГ).
К антигенпрезентирующим клеткам относятся моноциты и макрофаги, эндотелиальные клетки, пигментные клетки кожи (клетки Лангерганса) и др. К регуляторным клеткам относятся Т- и В-хелперы, супрессоры, контрсупрессоры, Т-лимфоциты памяти. Наконец, к эффекторам иммунного ответа принадлежат Т- и В-киллеры и В-лимфоциты, являющиеся в основном антителопродуцентами.
Важная роль в иммунном ответе отводится особым цитокинам, получившим наименование интерлейкинов (ИЛ). Из названия видно, что ИЛ обеспечивает взаимосвязь отдельных видов лейкоцитов в иммунном ответе. Они представляют собой малые белковые молекулы с молекулярной массой 15 000—30 000.
ИЛ-1 — соединение, выделяемое при антигенной стимуляции моноцитами, макрофагами и другими антигенпрезентирующими клетками. Его действие в основном направлено на Т-хелперы (амплифайеры) и макрофаги-эффекторы. ИЛ-1 стимулирует гепатоциты, благодаря чему в крови возрастает концентрация белков, получивших наименование реактантов острой фазы, так как их содержание всегда увеличивается в острую фазу воспаления. К таким белкам относятся фибриноген, С-реактивный белок, α1-антитрипсин и др. Белки острой фазы воспаления играют важную роль в репарации тканей, связывают протеолитические ферменты, регулируют клеточный и гуморальный иммунитет. Увеличение концентрации реактантов острой фазы является приспособительной реакцией, направленной на ликвидацию патологического процесса. Кроме того, ИЛ-1 усиливает фагоцитоз, а также ускоряет рост кровеносных сосудов в зонах повреждения.
ИЛ-2 выделяется Т-амплифайерами под воздействием ИЛ-1 и АГ; является стимулятором роста для всех видов Т-лимфоцитов (киллеров, хелперов, супрессоров) и активатором НК-клеток.
ИЛ-3 выделяется стимулированными Т-хелперами, моноцитами и макрофагами. Его действие направлено преимущественно на рост и развитие тучных клеток и базофилов, а также предшественников Т- и В-лимфоцитов.
ИЛ-4 продуцируется в основном стимулированными Т-хелперами и обладает чрезвычайно широким спектром действия, так как способствует росту и дифференцировке В-лимфоцитов, активирует макрофаги, Т-лимфоциты и тучные клетки, индуцирует продукцию иммуноглобулинов отдельных классов.
ИЛ-5 выделяется стимулированными Т-хелперами и является фактором пролиферации и дифференцировки эозинофилов, а также В-лимфоцитов.
ИЛ-6 продуцируется стимулированными моноцитами, макрофагами, эндотелием, Т-хелперами и фибробластами; вместе с ИЛ-4 обеспечивает рост и дифференцировку В-лимфоцитов, способствуя их переходу в антителопродуценты, т. е. плазматические клетки.
ИЛ-7 первоначально выделен из стромальных клеток костного мозга; усиливает рост и пролиферацию Т- и В-лимфоцитов, а также влияет на развитие тимоцитов в тимусе.
ИЛ-8 образуется стимулированными моноцитами и макрофагами. Его назначение сводится к усилению хемотаксиса и фагоцитарной активности нейтрофилов.
ИЛ-9 продуцируется Т-лимфоцитами и тучными клетками. Действие его направлено на усиление роста Т-лимфоцитов. Кроме того, он способствует развитию эритроидных колоний в костном мозге.
ИЛ-10 образуется макрофагами и усиливает пролиферацию зрелых и незрелых тимоцитов, а также способствует дифференцировке Т-киллеров.
ИЛ-11 продуцируется стромальными клетками костного мозга. Играет важную роль в гемопоэзе, особенно тромбоцитопоэзе.
ИЛ-12 усиливает цитотоксичность Т-киллеров и НК-лимфоцитов.
Иммунный ответ начинается с взаимодействия антигеипрезентирующих клеток с АГ, после чего происходят его фагоцитоз и переработка до продуктов деградации, которые выделяются наружу и оказываются за пределами антигенпрезентирующей клетки.
Специфичность иммунного ответа обеспечивается наличием особых антигенов, получивших у мышей наименование la-белка. У человека его роль выполняют человеческие лейкоцитарные антигены II класса, тип DR (Human Leukocyte Antigens, или HLA).
la-белок находится практически на всех кроветворных клетках, но отсутствует на зрелых Т-лимфоцитах; под влиянием интерлейкинов происходит экспрессия белка и на этих клетках.
Роль la-белка в иммунном ответе сводится к следующему. АГ могут быть распознаны иммунокомпетентными клетками лишь при контакте со специфическими рецепторами, однако количество АГ слишком велико и природа не заготовила для них соответствующего числа рецепторов, вот почему АГ («чужое») может быть узнан лишь в комплексе со «своим», функцию которого и несет la-белок или антигены HLA-DR.
Продукты деградации АГ, покинув макрофаг, частично вступают во взаимодействие с la-белком, образуя с ним комплекс, стимулирующий деятельность антигенпрезентирующей клетки. При этом макрофаг начинает секретировать ряд интерлейкинов. ИЛ-1 действует на Т-амплифайер, в результате чего у последнего появляется рецептор к комплексу la-белок + АГ. Именно эта реакция, как и все последующие, обеспечивает специфичность иммунного ответа.
Активированный Т-амплифайер выделяет ИЛ-2, действующий на различные клоны Т-хелперов и цитотоксические лимфоциты, принимающие участие в клеточном иммунитете. Стимулированные клоны Т-хелперов секретируют ИЛ-3, ИЛ-4, ИЛ-5 и ИЛ-6, оказывающие преимущественное влияние на эффекторное звено иммунного ответа и тем самым способствующие переходу В-лимфоцитов в антителопродуценты. Благодаря этому образуются AT, или иммуноглобулины. Другие интерлейкины (ИЛ-7, ИЛ-9, ИЛ-10, ИЛ-12) влияют преимущественно на рост и дифференцировку Т- и В-лимфоцитов и являются факторами надежности, обеспечивающими иммунный ответ.
Клеточный иммунитет зависит от действия гуморальных факторов, выделяемых цитотоксическими лимфоцитами (Т-киллерами). Эти соединения получили наименование «перфорины» и «цитолизины».
Установлено, что каждый Т-эффектор способен лизировать несколько чужеродных клеток-мишеней. Этот процесс осуществляется в три стадии: 1) распознавание и контакт с клетками-мишенями; 2) летальный удар; 3) лизис клетки-мишени. Последняя стадия не требует присутствия Т-эффектора, так как осуществляется под влиянием перфоринов и цитолизинов. В стадию летального удара перфорины и цитолизины действуют на мембрану клетки-мишени и образуют в ней поры, через которые проникает вода, разрывающая клетки.
Среди гуморальных факторов, выделяемых в процессе иммунного ответа, следует указать на фактор некроза опухолей (ФНО) и интерфероны.
Действие интерферонов неспецифично, так как они обладают различными функциями — стимулируют деятельность НК-клеток и макрофагов, влияют непосредственно на ДНК- и РНК-содержащие вирусы, подавляя их рост и активность, задерживают рост и разрушают злокачественные клетки, возможно, за счет усиления продукции ФНО (схема 6.1).
Гуморальный иммунный ответ обеспечивается AT, или иммуноглобулинами. У человека различают пять основных классов иммуноглобулинов: IgA, IgG, IgM, IgE, IgD. Все они имеют как общие, так и специфические детерминанты.
Иммуноглобулины класса G. У человека являются наиболее важными. Концентрация IgG в крови достигает 9—18 г/л. Иммуноглобулины класса G обеспечивают противоинфекционную защиту, связывают токсины, усиливают фагоцитарную активность, активируют систему комплемента, вызывают агглютинацию бактерий и вирусов, они способны переходить через плаценту, обеспечивая новорожденному ребенку так называемый пассивный иммунитет. Это означает, что если мать перенесла «детские инфекции» (корь, коклюш, скарлатина и др.), то новорожденный ребенок в течение 3—6 мес. к этим заболеваниям невосприимчив, так как содержит к возбудителям данных инфекций материнские AT.
Иммуноглобулины класса А. Делят на две разновидности: сывороточные и секреторные. Первые из них находятся в крови, вторые — в различных секретах. Соответственно этому сывороточный IgA принимает участие в общем иммунитете, а секреторный IgA обеспечивает местный иммунитет, создавая барьер на пути проникновения инфекций и токсинов в организм.
Секреторный IgA находится в наружных секретах — в слюне, слизи трахеобронхиального дерева, мочеполовых путей, молоке, молозиве. Молекулы IgA, присутствующие во внутренних секретах и жидкостях (синовиальная, амниотическая, плевральная, цереброспинальная и др.), существенно отличаются от молекул IgA, присутствующего в наружных секретах. Секреторный компонент, по всей видимости, образуется в эпителиальных клетках и в дальнейшем присоединяется к молекуле IgA.
IgA нейтрализуют токсины и вызывают агглютинацию микроорганизмов и вирусов. Концентрация сывороточных IgA колеблется от 1,5 до 4,0 г/л.
Содержание IgA резко возрастает при заболеваниях верхних дыхательных путей, пневмониях, инфекционных заболеваниях желудочно-кишечного тракта и др.
Иммуноглобулины класса IgE. Принимают участие в нейтрализации токсинов, опсонизации, агглютинации и бактериолизисе, осуществляемом комплементом. К этому классу также относятся некоторые природные AT, например к чужеродным (не свойственным человеку) эритроцитам. Содержание IgE повышается при инфекционных заболеваниях у взрослых и детей.
Иммуноглобулины класса IgD. Обладают свойством фиксироваться на базофилах и тучных клетках и вызывать в случае образования иммунных комплексов их дегрануляцию. Содержание увеличивается при так называемых аллергических заболеваниях — бронхиальной астме, вазомоторном рините, гельминтозах, аллергических дерматитах и др.
Иммуноглобулины класса IgD. Представляют собой антитела, локализующиеся в мембране плазматических клеток, в сыворотке концентрация их невелика. Значение IgD не выяснено. Предполагают, что IgD принимает участие в аутоиммунных процессах.
Регуляция иммунитета. Интенсивность иммунного ответа во многом определяется состоянием нервной и эндокринной систем. Установлено, что раздражение различных подкорковых структур (таламус, гипоталамус, серый бугор) может сопровождаться как усилением, так и торможением иммунной реакции на введение антигенов. Показано, что возбуждение симпатического отдела автономной (вегетативной) нервной системы, как и введение адреналина, усиливает фагоцитоз и интенсивность иммунного ответа. Повышение тонуса парасимпатического отдела вегетативной нервной системы приводит к противоположным реакциям.
Стресс, а также депрессии угнетают иммунитет, что сопровождается не только повышенной восприимчивостью к различным заболеваниям, но и создает благоприятные условия для развития злокачественных новообразований.
За последние годы установлено, что гипофиз и эпифиз с помощью особых пептидных биорегуляторов, получивших наименование «цитомедины», контролируют деятельность тимуса. Передняя доля гипофиза является регулятором преимущественно клеточного, а задняя — гуморального иммунитета.
Иммунная регуляторная система. В последнее время высказано предположение, что существуют не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная). Иммунокомпетентные клетки способны вмешиваться в морфогенез, а также регулировать течение физиологических функций. Не подлежит сомнению, что Т-лимфоциты играют чрезвычайно важную роль в регенерации тканей. Многочисленные исследования показывают, что Т-лимфоциты и макрофаги осуществляют «хелперную» и «супрессорную» функции в отношении эритропоэза и лейкопоэза. Лимфокины и монокины, выделяемые лимфоцитами, моноцитами и макрофагами, способны изменять деятельность центральной нервной системы, сердечно-сосудистой системы, органов дыхания и пищеварения, регулировать сократительные функции гладкой и поперечнополосатой мускулатуры.
Особенно важная роль в регуляции физиологических функций принадлежит интерлейкинам, которые являются «семьей молекул на все случаи жизни», так как вмешиваются во все физиологические процессы, протекающие в организме.
Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител, связывающих активные ферменты, факторы свертывания крови и избыток гормонов.
Иммунологическая регуляция, с одной стороны, является неотъемлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологическая регуляция носит прицельный характер и тем самым напоминает нервную. Лимфоциты и моноциты, а также другие клетки, принимающие участие в иммунном ответе, отдают гуморальный посредник непосредственно органу-мишени. Отсюда предложение назвать иммунологическую регуляцию клеточно-гуморальной. Основную роль в ней следует отвести различным популяциям Т-лимфоцитов, осуществляющих «хелперные» и «супрессорные» функции по отношению к различным физиологическим процессам.
Учет регуляторных функций иммунной системы позволяет врачам различных специальностей по-новому подойти к решению многих проблем клинической медицины.