АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

ФУНКЦИИ ЭНДОКРИННОЙ ЖЕЛЕЗЫ

Прочитайте:
  1. B) Слизистая оболочка покрыта многослойным плоским ороговевающим эпителием, в собственной пластинке находятся сальные и потовые железы, корни волос.
  2. B) Слизистая оболочка покрыта многослойным плоским ороговевающим эпителием, в собственной пластинке находятся сальные и потовые железы, корни волос.
  3. B. Для ультразвукового исследования функции внутренних органов
  4. C Вен вилочковой железы
  5. E. нарушением функции яичников аутоиммунного генеза
  6. Funcio laesa (нарушение функции).
  7. I. Врожденные аномалии развития щитовидной железы
  8. III. КРАТКИЙ СПРАВОЧНИК ГОРМОНОВ С УЧЕТОМ МЕСТА ИХ ВЫРАБОТКИ И ФУНКЦИИ
  9. III. Объективные признаки дисфункции сердца
  10. III. Объективные признаки дисфункции сердца

Изменения функций эндокринных желез, происходящие под влиянием повреждающих факторов среды, как правило, сопровождаются нарушениями в организме обмена веществ и физиологических функций. Соответственно, компенсаторные процессы в эндок­ринной системе следует разделить на две основные группы:

1 компенсация нарушенной функции самой эндокринной железы;

2 компенсация нарушенных процессов метаболизма и физиологических функций, регулируемых в организме эндокринной железой, при недостаточности ее гормонов.

Механизмы компенсаторных процессов первой группы могут быть как внутриорганными и внутрисистемными, так и межсистемными. Во-первых, компенсация нарушенной функции той или иной железы осуществляется за счет механизмов саморегуляции на уровне самой железы или системной регуляции по принципу обратной связи. Во-вторых, компенсация реализуется, как и в большинстве других органов, за счет мобилизации процессов физиологической и репаративной регенерации, способность к которой у железистой ткани достаточно высока. В-третьих, компенсаторные процессы осуществляются за счет изменения функций других систем организма, например, обеспечивающих всасывание необходимых для синтеза гормонов железы субстратов в желудочно-кишечном тракте, транспорт гормонов в свободном состоянии и в составе белковых комплексов, метаболизм и деградацию гормонов, экскрецию гормонов, наконец, связывание гормонов на уровне эффектора.

Компенсаторные процессы второй группы реализуются благодаря тому, что в регуляции основных метаболических и функциональных процессов принимает участие, как правило, несколько гормонов разных эндокринных желез, что позволяет компенсировать недостаточность или избыточность одних гормонов эффектами других (внутрисистемная компенсация). Компенсаторные процессы этой группы осуществляются и за счет межсистемных реакций с помощью нервной регуляции и саморегуляции метаболических и физиологических функций.

Поскольку механизмы саморегуляции функции эндокринной железы, прежде всего, связаны с процессами депонирования гормонов, их предшественников и даже субстратов в самой железе, создаваемый таким образом запас гормонов, предшественников и субстратов может обеспечить быструю, но кратковременную компенсацию возникающего в организме дефицита субстрата или повышенной потребности в гормоне. Так, в коллоиде щитовидной железы, находящемся в фолликулах, хранятся йодтиронины и йодтирозины и даже свободный йодид.

Ауторегуляция синтеза и секреции тироидных гормонов на уровне самой железы обеспечивается уровнем йода. Недостаток его активирует экстракцию йодида из крови, возрастание кровотока через щитовидную железу и ускорение биосинтеза тироидных гормонов. Напротив, избыток йодида подавляет синтез и секрецию тироидных гормонов. Механизм ингибирующего действия йодида, как правило, проявляющегося в условиях избыточной продукции гормонов, заключается в снижении экстракции йодида из крови, торможении процессов органического связывания йода, а также подавлении секреции гормонов железой. Назначение йодида с лечебной целью практикуется у больных с гиперфункцией щитовидной железы, при зобе. Избыточность ингибирующего влияния чрезмерных дозировок йодида у больных с гипертироидным зобом ведет к переходу гипертироидного состояния в эутироидное.

Для компенсации нарушенной функции эндокринной железы важнейшее значение имеет системный уровень регуляции, реализующийся с помощью механизма обратной связи. Так, регуляция функции щитовидной железы обеспечивается гипоталамо-аденогипофизарной системой с помощью пептидов: тиролиберина гипоталамуса и тиротропина гипофиза. Изменение уровня гормонов щитовидной железы в крови (преимущественно трийодтиронина) вызывает противоположные сдвиги в синтезе и секреции этих пептидов. При дефиците тироидных гормонов повышающийся по принципу обратной связи уровень тиротропина в крови способствует активации в щитовидной железе всех биосинтетических и секреторных процессов, а также стимулирует трофику и пластические процессы, физиологическую и репаративную регенерацию, что ведет к восстановлению сниженной функции железы.

Необходимым условием регенерации железы после ее повреждения является наличие определенной концентрации в крови тироидных гормонов, продуцируемых поврежденными структурами железы. Это связано с тем, что гормоны щитовидной железы необходимы для процессов биосинтеза белка и деления клеток в организме. Они стимулируют регенерацию большинства тканей организма вообще и самой железы в частности. Таким образом, при полном прекращении секреции тироидных гормонов или снижении их концентрации в крови ниже порогового уровня регенерация железы даже при избытке тиротропина оказывается невозможной. Если функция железы снижена в результате дефицита йода или если повреждение ее структур оказалось столь значительным, что привело к резкому уменьшению уровня тироидных гормонов в крови, мобилизуемый в кровь по механизму обратной связи тиротропин вызывает не регенерацию, а компенсаторную гипертрофию железы. Следовательно, процессы регенерации будут тем слабее, чем меньше остается неповрежденной ткани (например, после резекции).

При недостаточности процессов регенерации щитовидной железы иногда возникает необходимость в их искусственной стимуляции. Искусственное управление регенерацией щитовидной железы требует экзогенного введения тщательно дозируемых оптимальных количеств тироидных гормонов, чтобы, с одной стороны, стимулировать процессы регенерации, а с другой – не подавить их избытком повышенной секреции тиротропина.

Регенераторная способность высока и в других эндокринных железах, в частности в надпочечниках. Так, гиперфункция коры надпочечников, вызванная, например, избыточной стимуляцией кортикотропином гипофиза, приводит к ее гипертрофии вследствие усиления секреторного процесса. При этом происходит и перестройка структуры коры с преимущественным увеличением массы клеток пучковой зоны. Регенерация коры надпочечников есть следствие первичного повреждения ткани, и хотя при этом механизм обратной связи приводит к повышению в крови уровня кортикотропина, для полноценной регенерации необходимы и другие вещества – клеточные стимуляторы регенерации, тироидные гормоны, а также предшественники синтеза и метаболиты стероидных гормонов коры надпочечников. Процесс регенерации коры надпочечников развивается при различных степенях повреждения, даже при энуклеации, то есть почти полном удалении. Формирующаяся при регенерации перестройка метаболических процессов ведет к изменению количественных и качественных характеристик биосинтеза стероидных гормонов, что не только вызывает стимуляцию репаративных процессов в самой коре надпочечников, но и влияет на функции организма, нередко приводя к вторичным нарушениям. Так, следствием регенерации коры надпочечников является артериальная гипертензия. В экспериментах на животных показано, что повреждение коры надпочечников, воспроизводимое разными способами (раздавливанием, прошиванием, энуклеацией и т.п.), приводит к формированию артериальной гипертензии, получившей название «регенерационной».

Компенсация нарушенных функций эндокринных желез осуществляется и на межсистемном уровне. Так, биологическая активность секретируемых в кровь гормонов меняется в результате их связывания с транспортными белками крови. Избыточная секреция кортизола корой надпочечников ведет к увеличению в крови не только свободной, но и связанной с транскортином формы гормона, а избыточное связывание гормона с транспортными белками уменьшает его биологическую активность. Это происходит в торпидную фазу травматического шока, когда повышенная секреция кортизола сопровождается избыточным образованием связанной формы гормона. Напротив, в начальную фазу стресса («реакция тревоги», по Г. Селье) происходит высвобождение кортизола из связи с транскортином, что ведет к увеличению в крови концентрации биологически активной формы гормона и является необходимым условием защитной реакции организма. Благодаря образованию нескольких транспортных форм гормона осуществляется более значимая компенсация избыточных количеств гормона в крови. Так, при повышении концентрации кортизола в крови до уровня, более 1,0 мкмоль/л, часть гормона связывается также с альбумином крови.

Компенсация избыточной секреции в кровь гормонов осуществляется и через активацию их разрушения в печени, метаболических превращений в тканях-мишенях и экскреции с мочой. При недостаточном синтезе и секреции гормонов эти процессы, напротив, протекают менее интенсивно. К компенсаторным процессам межсистемного уровня относится и изменение депонирования гормонов в тканях. Так, при тиреотоксикозе в миокарде снижается содержание депонированных катехоламинов, поскольку при повышенном уровне тироксина нарушаются процессы окислительного фосфорилирования, и развивается дефицит АТФ, а также тормозится активность дофадекарбоксилазы. Избыточное количество в крови тироидных гормонов вызывает повышение чувствительности тканей, в частности сердца, к катехоламинам. Уменьшение количества катехоламинов в миокарде, таким образом, является важным механизмом снижения влияния избыточных количеств тироидных гормонов на сердечную мышцу.

Компенсаторные реакции на уровне эффектора нередко подчиняются правилу исходного состояния. Сущность этого правила заключается в том, что исходное состояние функциональной активности ткани, органа или системы определяет величину и характер их реакции на раздражитель. Так, в условиях повышенной функциональной активности эффектора (включая и уровень обмена веществ) гормоны-активаторы функции могут вообще не вызывать эффекта либо вести к ослабленному или даже противоположному (то есть угнетающему) эффекту. Напротив, при ослабленной функциональной активности эффектора такие гормоны-стимуляторы вызывают, как правило, более мощный активирующий эффект. Подобной закономерности подчиняются и метаболические эффекты гормонов. Например, в условиях повышенного катаболизма белка в организме глюкокортикоиды либо теряют свой катаболический эффект, либо проявляют его несколько слабее, либо вызывают даже анаболическое действие. В механизмах реализации правила исходного состояния, наряду с действием гормонов-антагонистов и процессами саморегуляции метаболизма, существенную роль играет зависящее от функциональной активности клеток изменение количества и аффинности клеточных мембранных рецепторов гормонов.

Компенсация избытка или недостатка уровня гормонов в крови может также осуществляться на уровне тканей-мишеней посредством изменения числа и аффинности клеточных мембранных рецепторов, приводя к десенситизации клеток в условиях избытка гормонов или к их сенситизации при гормональном дефиците.

Компенсация нарушений процессов метаболизма и физиологических функций, регулируемых эндокринной железой, при недостаточности ее гормонов. Наиболее значимую роль в компенсации нарушений деятельности эндокринных желез играют компенсаторные процессы, направленные не на поддержание секреторной деятельности железы, уровня гормона в крови или его влияния на органы-мишени, а на обеспечение компенсации недостаточных или избыточных эффектов гормона, то есть компенсации нарушений регулируемых гормоном процессов – метаболических и функциональных.

Один из важнейших механизмов такой компенсации связан с наличием синергизма и антагонизма эффектов гормонов разных эндокринных желез. Так, адреналин, глюкагон, глюкокортикоиды, соматотропин повышают уровень глюкозы в крови за счет расщепления гликогена, глюконеогенеза и подавления утилизации глюкозы периферическими тканями. Инсулин противодействует этим эффектам и вызывает гипогликемию. Примерами синергизма (частичного) могут служить эффекты паратирина и кальцитриола (активация всасывания кальция в кишечнике), а антагонизма – эффекты паратирина (гиперкальциемия) и кальцитонина (гипокальциемия). Как правило, синергизм и антагонизм эффектов гормонов являются неполными, поэтому компенсация одних нарушений метаболизма и функций сопровождается усугублением других. Это особенно ярко проявляется в процессе формирования нарушений деятельности эндокринной железы, когда нерезкие, предпатологические отклонения функции компенсируются, а более выраженные – проявляются.

Деятельность эндокринных желез взаимозависима. Эта взаимосвязь выражается не только в изменениях синтеза и секреции гормонов одной железы под влиянием гормонов другой (например, кортикостероиды подавляют функцию щитовидной железы), но и в соответствующих процессах на уровне эффекторов (например, паратирин ингибирует антидиуретический эффект вазопрессина). Способность гормонов менять реакцию ткани-мишени на действие других гормонов и нейромедиаторов, получившая название «реактогенное действие гормонов», является одним из важных механизмов компенсации нарушенных в организме метаболических процессов и физиологических функций при патологии эндокринной системы. Так, например, при нерезком дефиците соматотропина нарушения роста тела не происходит благодаря реактогенному действию инсулина и инсулиноподобных факторов роста, повышающих чувствительность тканей к соматотропину.

 


Дата добавления: 2015-07-25 | Просмотры: 573 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)