АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Сила действующая сзади «vis a fronte»

Прочитайте:
  1. Кой, сзади — спайкой половых губ, или задней спайкой. Узкое пространство перед задней спайкой половых губ называют ладьевидной ямкой.
  2. Методика определения высоты стояния верхушек легких спереди и сзади.
  3. Яичник, маточная труба и матка вид сзади

 

Присасывающая функция грудной клетки

 

 

Присасывающая функция правог о предсердия

 

Взаимоотношения встречных потоков по полым венам


 

 

Реакция венозных сосудов


Сила действующая сзади «vis a tergo». Сила, сообщаемая крови сердцем. Она продвигает кровь по артериальным сосудам. Если в артериальном русле эта сила соответствует 100 мм рт.ст., то в начале венул общее количество энергии, которой обладает кровь, прошедшая через капилляры, составляет около 13% от её начальной величины. Именно эта энергия и образует «vis a tergo».

Сокращения скелетной мускулатуры – так называемый «мышечный насос» - сдавливают вены и способствуют «выжиманию» крови из вен. Обратно кровь не перемещается, так как этому препятствуют клапаны вен. На ВВ влияет и гидростатическое давление в венах, особенно в вертикальном положении тела. Около 600 мл крови при переходе в вертикальное положение перемещается в сосуды нижних конечностей, гидростатическое давление увеличивается и венозный возврат уменьшается (до включения компенсаторных механизмов).

Сила действующая спереди (vis a fronte). присасывающая функция грудной клетки обеспечивает поступление крови из периферических вен в грудные вследствие существования отрицательного (ниже атмосферного) давления в плевральной полости. На вдохе внутриплевральное давление становится ещё отрицательнее, кровоток по нижней полой вене ещё больше ускоряется – ВВ увеличивается.

Присасывающая функция правог о предсердия. Во время диастолы давление в правом предсердии понижается, увеличивая тем самым ВВ. Во время систолы желудочка присасывающее действие обеспечивается пролабсом (смещением) атриовентрикулярного кольца. Это приводит к увеличению объёма предсердия, падению в нем давления и наполнению предсердия.

Важное значение имеют взаимоотношения встречных потоков по полым венам и вазомоторные реакции венозных сосудов. Повышение артериального давления при реализации прессорного рефлекса, увеличении ОЦК, действии адреналина, АТ-II и АДГ приводит к увеличению ВВ.

При снижении артериального давления изменения ВВ могут выражаться и в увеличении и в уменьшении ВВ. Увеличение ВВ происходит при депрессорном рефлексе (при повышении системного артериального давления и возбуждении барорецепторов), при ишемии миокарда, при уменьшении ОЦК. Системная депрессорная реакция в ответ на гипоксию (дыхание газовой смесью с пониженным содержанием кислорода до 6-10%), гиперкапнию (6% СО2), на введение ацетилхолина, брадикинина, простагландина Е1 приводит к увеличению ВВ.

Степень увеличения ВВ определяется не только величиной, но и направленностью изменений кровотока по нижней и верхней полым венам. Механизм разнонаправленных изменений кровотока в полых венах состоит в том, что, например, при действии вазоконстрикторных препаратов будет преобладать их действие на артериолы сосудов бассейна брюшной аорты.

Время кругооборота крови – есть результирующая всех линейных скоростей во всех частях сосудистой трубки, также как и МОК есть результирующая всех частных минутный объёмов в элементах большого круга кровообращения. Это время, необходимое для того, чтобы частица крови совершила полный круг и появилась в том же месте, которое условно принимается за пункт начала движения. Время кругооборота крови частицы крови составляет приблизительно 27 систол при частоте сердечных сокращений 70-80 уд./мин или примерно 20-23 секунды 4/5 этого времени приходится на большой круг кровообращения, 1/5 – на малый. При физической нагрузке время кругооборота крови уменьшается до 9 с, а при тяжёлых расстройствах кровообращения может увеличиться до 63с.

Время кругооборота крови не определяет величины МОК, но его определение важно для суждения об общих гемодинамических условиях.

 

 

Рис. 7.9. Критерии разделения цикла сердца на фазы.

 

Для фазового анализа цикла сердечной деятельности у человека катетеризацию сердца обычно не проводят, а используют ряд не-инвазивных методов. В частности, получил распространение метод поликардиографии, основанный на синхронной регистрации ЭКГ, фонокардиограммы (ФКГ) и сфигмограммы (СГ) сонной артерии (рис. 7.9). На синхронной записи этих кривых по интервалу RR

По ЭКГ определяют продолжительность цикла (1),

по интервалу от начала зубца Q на ЭКГ до начала II тона на ФКГ определяют продолжительность систолы (2),

по интервалу от начала анакроты до инцизуры на СГ определяют продолжительность периода изгнания (3),

по разности между продолжительностью систолы и периода изгнания — период напряжения (4),

по интервалу между началом зубца Q ЭКГ и началом I тона ФКГ — период асинхронного сокращения (5),

по разнице между продолжительностью периода напряжения и фазы асинхронного сокращения — фазу изометри­ческого сокращения (6).

 

Кинетокардиография — метод регистрации низкочастот­ных вибраций грудной клетки, обусловленных механической дея­тельностью сердца. С этой целью применяют датчики, обеспечива­ющие преобразование механических колебаний в электрические. Кинетокардиография позволяет изучить фазовую структуру цикла левого и правого желудочков сердца одновременно.

 

Электрокимография является электрической регистра­цией движения контура сердечной тени на экране рентгеновского аппарата. К экрану у краев контура сердца в области предсер­дия, желудочка или аорты прикладывают фотоэлемент, соединен­ный с осциллографом. При движениях сердца изменяется осве­щенность фотоэлемента, что регистрируется осциллографом в виде кривой. Так получают кривые сокращения и расслабления отделов сердца.

Баллистокардиография основана на том, что изгна­ние крови из желудочков и ее движение в крупных сосудах вызывают колебания всего тела, зависящие от явлений реактивной отдачи, подобных тем, которые наблюдаются при выстреле из пушки (название методики «баллистокардиография» происходит от слова «баллиста» — метательный снаряд). Кривые смещений тела, записываемые баллистокардиографом и зависящие от работы сер­дца, имеют в норме характерный вид. Для их регистрации су­ществует несколько различных способов и приборов.

 

Динамокардиография разработана Е. Б. Бабским и сотр. Эта методика регистрации механических проявлений сердечной деятельности человека основана на том, что движения сердца в грудной клетке и перемещение крови из сердца в сосуды сопро­вождаются смещением центра тяжести грудной клетки по отно­шению к той поверхности, на которой лежит человек. Обследуемый лежит на специальном столе, на котором смонтировано особое устройство с датчиками — преобразователями механических ве­личин в электрические колебания. Устройство находится под груд­ной клеткой исследуемого. Смещения центра тяжести регистри­руются осциллографом в виде кривых. На динамокардиограмме отмечаются все фазы сердечного цикла: систола предсердий, пе­риоды напряжения желудочков и изгнания из них крови, прото-диастолический период, периоды расслабления и наполнения же­лудочков кровью.

Эхокардиография — метод исследования механической де­ятельности и структуры сердца, основанный на регистрации отра­женных сигналов импульсного ультразвука. При этом ультразвук в форме высокочастотных посылок (до 2,25—3 мГц) проникает в тело человека, отражается на границе раздела сред с различным ультразвуковым сопротивлением и воспринимается прибором. Изо­бражение эхосигналов от структур сердца воспроизводится на экране осциллографа и регистрируется на фотопленке. Эхокардиограмма (ЭхоКГ) имеет вид ряда кривых, каждая точка которых отражает положение структур сердца в данный момент времени. ЭхоКГ всегда регистрируется синхронно с ЭКГ, что позволяет производить оценку механической активности сердца в определенные фазы сердечного цикла.

 

Турбулентное течение. При определенных условиях ламинарное течение превращается в

 

Рис. 20.4. Профили скоростей при ламинарном (коаксиальном, цилиндрическом) (сплошная красная кривая) и турбулентном (черная штриховая кривая) потоках. При турбулентном течении как скорость осевого потока, так и средняя скорость ниже, чем при ламинарном

 

 

 

Рис. 20.9. Изменения пульсовых колебаний давления и кровотока в аорте и артериях ног. Следует отметить, что по мере удаления от сердца появляется антероградный кровоток во время диастолы и повышается систолическое давление (по Макдональду [15])

 

 

Рис. 20.11. Определение среднего артериального давления в аорте (слева) и периферической артерии (справа). Рc–систолическое давление; Рср–среднее давление; Рд–диастолическое давление. Площади закрашенных участков с обеих сторон от уровня среднего давления равны друг другу (подробнее см. в тексте)

 

Рис. 20.10. Схема соотношения между площадью поперечного сечения, давлением и средней линейной скоростью кровотока в различных отделах сердечно–сосудистой системы

 

 

Рис. 20.14. Сфигмограммы, записанные в различных отделах артериального русла. Увеличение систолического давления и дикротический подъем особенно хорошо выражены в тыльной артерии стопы. Сдвиг кривых в направлении горизонтальной оси соответствует времени, необходимому для распространения пульсовой волны по артериям (по Remington, Wood с изменениями Гайтона [8])

 

 

Рис. 20.15. Изменения формы и амплитуды пульсовой волны в лучевой и подключичной артериях при некоторых нарушениях функции сердечно–сосудистой системы. Подробнее см. в тексте (по Уиггерсу [28])

 

Рис. 20.16. Одновременная запись ЭКГ и пульсации яремной вены. Подробнее см. в тексте

 

 

Рис. 20.17. Влияние гидростатического давления на венозное и артериальное давление спокойно стоящего человека (по Гайтону [8] с изменениями)

 

 

Рис. 20.44. Измерение артериального давления у человека по способу Рива–Роччи. Приведена схема наиболее распространенных звуковых явлений (тонов Короткова) при аускультативном методе определения давления. Подробнее см. в тексте

 

 

 

 

Рис. 20.45. Схема измерения сердечного выброса по способу Фика (А) и методу разведения индикатора (Б). В случае Б вычисляется минутный объем плазмы (МОП); учитывая, что гематокрит равен примерно 45%, общий сердечный выброс составляет около 6500 мл/мин

 

Измерение сердечного выброса у человека. Сердечный выброс у человека можно измерить при помощи непрямых методов, не требующих каких–либо серьезных хирургических процедур. Эти методы основаны либо венозную кровь следует забирать при помощи катетера из легочной артерии, где она уже полностью перемешалась. Сердечный выброс можно измерять аналогичным образом, используя в качестве индикатора СO2 или небиологические газы – ацетилен, закись азота и т.д.

При использовании так называемых методов разведения в кровь как можно быстрее (а не постепенно, как при поглощении O2 по способу Фика) вводят определенное количество какого–либо индикатора –красителя, радиоактивного вещества, холодной жидкости и т.п. Концентрация индикатора в сосуде, расположенном «ниже» (по току крови) от места введения, отражает величину объема крови, в котором этот индикатор растворился и был перенесен к месту забора пробы. Содержание индикатора можно определить при помощи специальных кювет, через которые течет кровь, или путем быстрых заборов крови;

можно также производить фотоэлектрическую запись без забора крови. В результате получают кривые разведения, обладающие некоторыми важными характеристиками (рис. 20.45, Б). Момент введения индикатора–это как бы точка отсчета (время введения, ВВ). После латентного периода (ЛП) концентрация индикатора в месте забора крови начинает повышаться, достигая первого пика Cmax1 (время концентрации, ВК). Таким образом, время достижения первого пика (ВПП) равно ЛП + ВК. Затем концентрация индикатора экспоненциально снижается, но через некоторое время наступает его рециркуляция (повторное поступление из различных сосудистых областей), и на кривой появляются новые пики концентрации. Время между первым и вторым пиками называется временем рециркуляции (ВРц). Для определения сердечного выброса необходимо получить кривую без рециркуляции, т.е. экстраполировать ее нисходящую часть. Это довольно просто осуществить графически, изобразив нисходящую часть кривой в логарифмическом масштабе. При этом нисходящая часть превращается в прямую линию; продолжая ее до пересечения с горизонтальной осью, получают так называемую первичную кривую, т.е. кривую, которая была бы записана в отсутствие рециркуляции. Расстояние между первым пиком и точкой пересечения нисходящей части кривой с осью абсцисс соответствует времени разведения (ВРа). Сумма ВК и ВРа равна времени пассажа (ВП).

Среднее время циркуляции (СВЦ), т.е. среднее время, необходимое для переноса всех частичек индикатора от места введения до места забора пробы, определяют как усредненное по времени значение интегрированной площади поверхности под первичной кривой. Для вычисления средней концентрации (Сcр) ту же величину усредняют по концентрации.

Вычисление объема крови Vc в котором растворяется и переносится от места введения до места забора пробы известное количество индикатора (И), производится следующим образом:

 

 

Рис. 19.26. Изменения в некоторых процессах и параметрах во время сердечного цикла. Четыре периода цикла обозначены вверху. Римскими цифрами отмечены тоны сердца


Дата добавления: 2015-11-02 | Просмотры: 567 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.011 сек.)