АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
КАК ОСНОВА ДИФФЕРЕНЦИРОВКИ
Зрелая яйцеклетка, которую Т.Х. Морган справедливо считал самой дифференцированной клеткой в организме, представляет собой мозаичную, высокогетерогенную систему. Один из процессов, приводящий к гетерогенности яйцеклетки - овоплазматическая сегрегация.
Неравномерное распределение компонентов цитоплазмы в яйцеклетке можно обнаружить уже на стадии созревания. Как было показано в п. 7.2, овоплазматическую сегрегацию сопровождает поляризация яйцеклетки. Остановимся более подробно на процессах, приводящих к овоплазматической сегрегации и роли последней в дифференцировке клеток развивающегося зародыша.
Короче, читать с сайта.
2.28. альбом
2.29. альбом
2.30. ГОМЕОСТАЗ - свойство живого организма сохранять относительное динамичное постоянство внутренней среды. Гомеостаз выражается в относительном постоянстве химического состава, осмотическом давлении, устойчивости основных физиологических функций. Гомеостаз специфичен и обусловлен генотипом.
Генетические механизмы гомеостаза - самовоспроизведение, основанное на редупликации ДНК по принципу комплементарности. В случае нарушения структуры молекул ДНК восстановление генома, исправление повреждения осуществляется посредством репарации. При нарушении репарации - происходит нарушение гомеостатических реакций.
Гомеостаз клеточной среды обеспечивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из неё. В клетке непрерывно идут процессы изменения и восстановления органоидов, особенно при повреждающих факторах (физическая нагрузка влечет увеличение количества митохондрий, увеличение сердечных сокращений, гипертрофию миокарда и т.д.).
2.31. В биологии детерминация — это процесс определения дальнейшего пути развития клеток. В эмбриологии — возникновение качественного своеобразия частей организма на ранних стадиях его развития и определяющее путь дальнейшего развития частей зародыша.
Опыты в альбоме
2.32. Детерминированность элементов развивающегося организма тесно связана с понятием потенций развития. Потенции (проспективные потенции) - это все возможные направления развития элементов организма, которые могли бы осуществиться при определенных условиях, в том числе и отличных от нормальных. То, во что данный элемент развивается при нормальных условиях, называют его проспективным (презум-птивным) значением. Очевидно, что проспективные потенции некоторой части зародыша не могут быть уже ее проспективного значения.
На каждом этапе развития элементы организма - отдельные клетки, клеточные комплексы, зачатки органов и структур характеризуются определенными потенциями. В ходе развития организма по мере усиления детерминации происходит изменение (сужение) потенций его элементов. Другими словами, наблюдается рестрикция - ограничение возможностей выбора путей развития, предоставляемых развивающемуся элементу. Пример, иллюстрирующий рестрикцию потенций клеток мезодермы зародыша, представлен на рис. 8.51.
Рассмотрим, как происходит изменение потенций элементов развивающегося организма на примере Хордовых. Как говорилось выше, на стадии дробления в клетках зародыша первоначально синтез белков осуществляется на матрицах, запасенных в ходе овогенеза. Когда происходит активация собственных генов зародыша, экспрессирует-ся максимальное за весь период онтогенеза количество генетического материала. Все клетки зародыша на этой стадии развития синтезируют только общеклеточные белки («house keeping» proteins) и проявляют активность одних и тех же генов. Вследствие этого (напомним, что на указанной стадии) зародыш является однослойным, поскольку все его клетки однородны с генетической и биохимической точек зрения. Бла-стомеры в фазе дробления эквипотенциальны (равнонаследственны), т.е. все они имеют одинаковые возможности развития. Эти возможности максимальны, что определяет способность отдельного бластомера дать начало целому зародышу и, следовательно, всем типам клеток сформированного организма. Это свойство клеток получило название тоти-(омни) потентность. Доказательством служат опыты Дриша, который разделял бластомеры 2-, 4- и даже 8-клеточных зародышей морского
Рис. 8.51. Схема дифференцировки мезодермы (по В.В. Яглову, с упрощениями)
ежа. Отдельные бластомеры впоследствии давали начало полноценному организму. Сходные эксперименты были предприняты и на других животных, в том числе относящихся к различным классам Хордовых. Было установлено, что у тритона тоти(омни)потентность сохраняется до стадии 16 бластомеров, у кролика - до стадии 4-8 бластомеров, у человека - 24 бластомеров. Доказательством последнего утверждения является рождение у человека однояйцевых близнецов (см. также полиэмбриония).
У большинства хордовых клетки утрачивают тоти(омни)потентность к концу дробления. На стадии бластулы и в фазе гаструляции начинают работать гены терминальной дифференцировки, кодирующие специфические белки. Вследствие этого происходит детерминация клеток и начинаются проявления дифференцировки клеток зародыша, образующих к концу гаструляции зародышевые листки. На этом этапе
наблюдается рестрикция потенций клеток зародыша, что подтверждают опыты по пересадке в развивающийся «неокрашенный» зародыш клеток, взятых из различных областей другого зародыша той же стадии развития и помеченных флуоресцентным красителем. Было установлено, что отдельные энтодермальные клетки до стадии средней бластулы практически тоти(омни)потентны: будучи пересаженными в соответствующую область, они могут дать все другие клеточные типы, происходящие в норме как из экто-, так и из мезодермы. Например, если одну меченую энтодермальную клетку пересадить на территорию глазного зачатка, то она даст одну из клеток сетчатки глаза. Однако если отдельные энтодермальные клетки пересаживали на стадии поздней бластулы, они сохраняли потенции к формированию мезодермальных клеток, но утрачивали потенции к образованию эктодермальных. Наконец, к стадии ранней гаструлы они сохраняли потенции только к образованию эн-тодермальных производных. В целом к концу гаструляции возможности дифференцировки клеток зародыша ограничиваются компетенциями конкретных зародышевых листков.
Однако круг возможных направлений развития клеток все еще довольно широк, клетки мульти(плюри)потентны. Благодаря этому клетки на стадии ранней гаструлы оказываются способны при определенных условиях к трансдетерминации - смене направления развития, переопределению своей судьбы. В этом случае говорят о состоянии лабильной детерминации. В ходе последующего развития лабильная детерминация сменяется стабильной, которая необратимо и прогрессивно сужает круг возможных направлений развития данного элемента организма. В ходе гисто- и органогенеза наблюдается дальнейшее ограничение возможных путей развития элементов зародыша, вплоть до момента, когда сохраняется лишь единственный путь специализации - подобное состояние определяется как унипотентность. Процесс прогрессивного ограничения потенций в ходе онтогенеза получил название канализация развития (рис. 8.52).
Из вышесказанного следует вывод, что детерминация элементов развивающегося организма - это процесс, пользуясь языком эмбриологов и биологов, развития, ограничения проспективных потенций до проспективных значений.
2.33. В условиях нормального развития преобразования отдельных элементов и организма в целом строго согласованы по месту, объему и срокам. Однако даже при различных естественных или искусственных нарушениях процесса развития зародыша возможно восстановление нормального его хода. Это явление, получившее название эмбриональная регуляция, открыто в 1908 г. Г. Дришем.
Возможность эмбриональной регуляции определяется наличием в ходе развития периода, когда клетки зародыша тоти(омни)- или мульти(плюри)потентны и вследствие этого проспективные потенции элементов (частей) зародыша шире, чем их проспективная судьба. Важно заметить, что в этом периоде в зародыше имеются эквипотенциальные области, имеющие одинаковые возможности развития. На данном онтогенетическом отрезке развивающиеся элементы (части) зародыша обладают слабой компетенцией (способностью к выбору пути развития при определенных внешних воздействиях), а их детерминация лабильна, то есть не носит окончательного необратимого характера. Поэтому возможно изменить судьбу элемента (части) зародыша в результате изменения условий его (ее) развития, другими словами, возможна его трансдетерминация. Путь дальнейшего развития элемента (части) зародыша во многом зависит от его положения в зародыше и оказываемых на него (нее) воздействий. Именно благодаря всему перечисленному и возможно восстановление нормальной, геометрически правильной (результат морфогенеза) и полной структуры организма, несмотря на удаление, добавление и перемешивание части материала зародыша, что было продемонстрировано многочисленными экспериментами по нарушению развития на стадиях зиготы, дробления, гаструляции, органогенеза. Например, исследователи объединяли диссоциированные клетки двух отличающихся по генам окраски шерсти мышиных зародышей, находящихся на стадии морулы. Образовавшуюся в результате объединения бластоцисту имплантировали в матку мыши (приемной матери). В итоге развивались нормальные мышата-химеры (аллофенные мыши), в окраске которых проявилось действие генов обоих «родителей» (рис. 8.53).
Восстановление нормального хода онтогенеза возможно даже при нарушении ово(оо)плазматической сегрегации яйцеклетки. Так, сильное центрифугирование яиц моллюсков, морского ежа, амфибий, приводящее к полному нарушению расположения в них (их цитоплазме) желтка
Рис. 8.53. Схема эксперимента по получению химерных мышей
и других компонентов, не изменяет характера развития. Аналогичные результаты получены и в ходе экспериментов по изъятию части цитоплазмы яйцеклетки или объединению цитоплазмы нескольких яйцеклеток. В этих случаях происходило формирование нормального зародыша, имевшего соответственно меньший или больший, чем обычно, размер.
Возможность эмбриональной регуляции существует и у зародышей с ярко выраженным мозаичным развитием, несмотря на раннюю и необратимую детерминацию клеток и структур развивающегося организма. Так, у одного из видов коловраток тело взрослой особи содержит точно определенное число клеток - 959, из них 301 - клетки кожи, 165 образуют глотку, 19 - половой аппарат, 122 - мускулатуру, 247 - нервную систему, 24 - выделительную систему. Формирование практически каждой клетки взрослого организма жестко и необратимо детерминируется цитоплазматической сегрегацией специфических факторов уже во время первого деления дробления. Однако изолированный единственный бластомер с половым зачатком может образовывать целый зародыш, т.е. он обладает тоти(омни)потентностью. Кроме того, у такого зародыша с жестко детерминированными клетками сохраняется ограниченная возможность переопределения клеточной судьбы (клеточных судеб) вследствие индуктивных межклеточных взаимодействий.
Важное следствие регуляционных процессов - эквифинальность развития, т.е. достижение нормального (требуемого) конечного результата разными путями. Например, после диссоциации и перемешивания бластомеров морского ежа формировались нормальные личинки, однако образование структур происходило иными путями: кишечник формировался не путем инвагинации, а вследствие расхождения клеток из плотной массы - шизоцельно, скелет возникал раньше, чем покровы.
Эмбриональная регуляция - признак эволюционного прогресса, так как она обеспечивает возможность получения нормального (требуемого) конечного результата развития даже при его нарушениях, а также определяет резерв изменчивости, который может стать источником эволюционных преобразований. В ходе онтогенеза способность (возможность) к эмбриональной регуляции падает (снижается), но не исчезает совсем, так как известно, что у взрослого организма существует, например, способность к регенерации.
2.34. Морфогенез - процесс образования структур и органов и преобразования их формы в процессе индивидуального развития организмов. Это, несомненно, самый сложный и упорядоченный природный процесс.
В классической эмбриологии под морфогенезом обычно понимают возникновение многоклеточных структур. У хордовых животных первые видимые морфогенетические события - закладка осевых органов - отмечаются в ходе нейруляции. Однако следует помнить, что индукционные взаимодействия групп клеток (зачатков), определяющие начальные этапы морфогенеза, осуществляются еще на стадии бластулы и ранней гаструлы (см. п. 8.2.8). Таким образом, правомерно считать, что морфогенез на над-клеточном уровне начинается со стадии бластулы. В период гаструляции, как и во время нейруляции, перестройки охватывают весь зародыш. Следующие затем органогенезы представляют собой все более локальные процессы. Внутри зачатка каждого из формирующихся органов происходит дальнейшая последовательная дифференциация.
Параллельно с образованием многоклеточных структур формируются субклеточные и клеточные элементы. Происходят сложные цитодиффе-ренцировки, которые осуществляются путем координированной активности многих внутриклеточных образований - мембраны, микротрубочек и центров их организации, аппарата Гольджи и ряда других. Так, диффе-ренцировка всасывающих клеток эпителия почек и кишечника связана со сборкой мощных пучков актиновых микрофиламентов, образующих структурную основу микроворсинок, размеры и строение которых характеризуются высокой точностью (определенностью). Помимо этого происходит перестройка клеточных мембран, определяющая их будущие функциональные свойства. Эти процессы, в свою очередь, сопровождаются синтезом и пространственной организацией макромолекул, в частности, образованием и встраиванием в плазмалемму белковых комплексов, обеспечивающих различные виды транспорта веществ. Таким образом, морфогенез представляет собой многоуровневый динамический процесс, который в конечном итоге приводит к формированию интегрированной сбалансированной (целостной) особи конкретного биологического вида.
Морфогенез как рост и клеточная дифференцировка относится к ациклическим процессам, т.е. не возвращающимся в прежнее состояние и по большей части необратимым. Главное свойство ациклических процессов - их пространственно-временная организация. Проблема формирования пространственной структуры развивающегося организма относится к одной из наиболее сложных в биологии.
Каковы же движущие силы морфогенеза? Этот вопрос до сих пор остается открытым.
Безусловно, в осуществлении морфогенеза значительная роль принадлежит генетической информации, которую организм получает при формировании (образовании в момент оплодотворения). Геном обеспечивает возможность развития особи конкретного вида. Постепенные прогрессирующая и последовательная дифференциации клеточных комплексов и частей зародыша, образование определенных структур и органов в ходе его развития осуществляется на основе дифференциальной экспрессии генов (см. п. 8.2.5) в идентичных наборах (необходимо помнить о ди-плоидности зиготы и соматических клеток, что определяет возможность присутствия в генотипах разных зародышей различных аллельных форм конкретных генов). При этом в формировании даже отдельного признака, не говоря уже об образовании сложной пространственной структуры развивающегося организма, участвует значительное число генов, которое может достигать нескольких тысяч.
2.35. В начале ХХ в. американским ученым Ч. Чайльдом разработана концепция физиологических градиентов. По мнению автора, пространственная локализация процессов клеточной дифференцировки и морфогенеза определяется обнаруживаемыми у многих животных градиентами интенсивности обмена веществ и совпадающими с ними градиентами повреждаемости тканей. Обычно они снижаются от переднего (головного, рострального, анимального) полюса зародыша к заднему (хвостовому, каудальному, вегетативному). Возникновение самих градиентов определяется гетерогенностью внешней среды, например распределением питательных веществ, концентрацией кислорода или силой тяжести. Любое из перечисленных условий или их совокупность могут вызвать первичный физиологический градиент в яйцеклетке. Затем возможно возникновение вторичного градиента под некоторым углом к первому. Система из двух или более градиентов и создает определенную координатную систему, функцией координаты является судьба клетки.
В 1969 г. английским биологом Л. Вольпертом сформулирована концепция позиционной информации (модель трехцветного французского флага) - одна из наиболее распространенных точек зрения на данный момент. Под позиционной информацией подразумевается зависимость судьбы той или иной клетки от ее положения (позиции) в системе развивающегося организма. Позиция определяется концентрацией химических веществ - морфогенов. По современным представлениям, морфоген выделяется из локального источника (группы клеток или определенной зоны зародыша), и во время последующей диффузии в ткани образуется градиент его концентрации. В развивающемся зародыше одновременно существуют градиенты различных морфогенов, диффундирующих из нескольких источников. Позиционная информация в виде различных концентраций разнообразных морфогенов воспринимается клетками, и их детерминация и дифференцировка определяются полученными сигналами. Один и тот же набор сигналов может по-разному восприниматься и интерпретироваться клетками в зависимости от их чувствительности к различным концентрациям морфогена. Таким образом, создается своеобразная химическая мозаика, определяющая план строения организма, воплощаемый в жизнь в ходе онтогенеза. Важно то обстоятельство, что подобные градиенты морфогенов могут возникать как в целом зародыше на начальных этапах эмбриогенеза, так и в отдельных формирующихся зачатках в дальнейшем развитии. Получаемая клеткой позиционная информация определяет, какую часть образующейся структуры и в каком именно месте зародыша клетка будет формировать.
2.36. Однако представленные концепции не обладают целостностью. Очевидно, что одинаковые сигналы могут прочитываться клетками совершенно по-разному. Кроме того, градиенты в формирующемся зародыше могут изменяться. В опытах по перемешиванию клеток зародыша, объединению нескольких зародышей, удалению части клеток зародыша, при которых все сформированные градиенты нарушаются, наблюдается тем не менее возникновение нормальных (ожидаемых) закладок и формирование полноценных сложных структур. Все сказанное позволяет сделать вывод, что возникающие градиенты не являются той единственной движущей силой, которая однозначно определяет сложнейший процесс морфогенеза.
Изменение концентрации того или иного морфогена, вероятнее всего, не определяет однозначно направление клеточной дифференци-ровки, а носит дестабилизирующий характер, т.е. выводит клетки из исходного недифференцированного состояния. Достижение же клеткой окончательного состояния зависит в значительной мере от межклеточных взаимодействий, геометрии клеточных групп, их движений, механических напряжений и т.д. Рассуждения подобного рода привели к разработке в 20-30-х гг. ХХ в. концепции морфогенетического поля. Наиболее разработанные концепции эмбрионального поля принадлежат австрийскому биологу П. Вейсу и двум российским-советским ученым А.Г. Гурвичу и Н.К. Кольцову. Они рассматривают весь зародыш (на ранних стадиях развития) либо отдельный его участок (на более поздних стадиях) как единое целое, развитием которого управляет поле этого целостного образования, созданное всей совокупностью элементов данного поля. Так, у амфибий и других животных на стадии поздней бластулы можно совершенно точно указать так называемые презум-птивные (предполагаемые) зачатки - области, из которых разовьются те или иные органы (см. п. 7.4.2.2). Эти области можно рассматривать как морфогенетические поля.
По мнению П. Вейса и А.Г. Гурвича, морфогенетическое поле не обладает обычными физико-химическими характеристиками. Так, А.Г. Гурвич полагал, что в формообразовательных процессах принимает участие биологическое поле, источником которого, вероятно, являются ядро клетки, его хромосомы. Клетки оказывают влияние друг на друга своими полями. Общее (целое) поле зародыша или зачатка какой-либо структуры - объединение полей всех составляющих его клеток. Н.К. Кольцов, напротив, считал, что силовое поле, с которым связано развитие зародыша, является физическим. Оно порождает потенциалы различной природы (электрической, химической, температурной, гравитационной и др.), под влиянием которых и осуществляются морфоге-нетические процессы.
Согласно всем этим концепциям, поле развивается так же, как и зародыш. Первоначальное воздействие поля приводит к осуществлению какого-либо морфогенетического процесса (например, образованию определенной закладки), следствием чего становится изменение поля, а это, в свою очередь, приводит к дальнейшему формообразованию. Таким образом, по мере развития образуются все новые и новые поля, управляющие развитием различных структур (органов).
По мнению П. Вейса, клетки формирующегося организма пассивны, и их преобразования полностью определяются морфогенетическим полем. По теории А.Г. Гурвича - поле порождают сами клетки зародыша.
2.37. Термин «самоорганизующаяся система» ввел в 1947 г. английский кибернетик У.Р. Эшби.
Однако сегодня еще рано говорить о появлении единой теории самоорганизации. Можно лишь констатировать существование различных концепций самоорганизации. В частности, можно указать на работы известного биолога К. Уоддингтона о морфогенезе как системе креодов. В процессе эмбриогенеза осуществление записанной в генах программы развития происходит в конкретных условиях среды. Взаимодействие генов и среды описывается на следующей модели (рис. 8.62). Эмбриональное развитие сравнивается с шариком, катящимся по наклонной поверхности с разными желобками, названной эпигенетическим ландшафтом (пространство возможностей). Структурно-устойчивые пути развития структур (желобки) обозначаются как креоды. Самый глубокий желобок, соответствующий наиболее вероятному пути, определяет нормальное развитие организма. У этого основного желобка есть много разветвлений, менее глубоких, соответствующих отклонениям в развитии, по ним шарик покатится с меньшей долей вероятности. Мутации меняют соотношение вероятностей разных путей (на рисунке - меняется глубина желобков), и увеличивают вероятность развития по «неправильному» пути. Однако в части случаев воздействие среды может скомпенсировать дефект и вернуть организм на нормальный путь развития. Используется широкое понимание термина «среда»: среда внутриклеточная (овоплаз-матическая сегрегация), внутриорганизменная (межклеточные и межзачатковые взаимодействия, гормональный фон и т.д.), внеорганизменная среда (в том числе воздействие лекарственных средств).
Близкие идеи лежат в основе концепции диссипативных структур. Диссипативными (от лат. dissipatio - рассеяние) называют энергетически открытые, термодинамически неравновесные биологические и небиологические системы, в которых часть энергии, поступающей в них извне, рассеивается. В настоящее время показано, что в сильно неравновесных условиях, т.е. при достаточно сильных потоках вещества и энергии, системы могут самопроизвольно и устойчиво развиваться, дифференцироваться. В таких условиях возможны и обязательны нарушения однозначных причинно-следственных связей и проявления эмбриональной регуляции и других явлений. Примерами диссипативных небиологических систем являются химическая реакция Белоусова-Жаботинского, а также математическая модель абстрактного физико-химического процесса, предложенная английским математиком А. Тьюрингом. В общих чертах применительно к морфогенезу идея такова (рис. 8.63). В некоторых самоорганизующихся системах существует первоначально однородное распределение молекул веществ. В простейшем случае их два: активатор и ингибитор, которые взаимодействуют друг с другом. В таких системах распределение веществ может спонтанно становиться волновым - появляются области с высокой (пик) и низкой концентрацией. Такая система названа реакционно-диффузной. При увеличении размеров системы число таких областей (пиков) возрастает. В случае нелинейных взаимодействий образуются сложные пространственно-временные режимы типа диссипативных структур - стационарных во времени и неоднородных по пространству распределений концентраций веществ, поддержание которых происходит за счет диссипации энергии системы.
С использованием этой модели была осуществлена динамическая компьютерная имитация формирования окраски у различных животных, например зебры, гепарда и др. Установлено, что запуск и остановка морфогенеза окраски происходит под управлением генетического аппарата, а формирование всего богатства окраски - результат образования различных диссипативных структур в ходе развития автоволновых процессов.
Несмотря на огромный интерес к процессу морфогенеза, многие проблемы формообразования остаются нерешенными. Теория морфогенеза до сих пор отсутствует, и его движущие силы остаются нераскрытыми. Все перечисленные концепции целостности развития носят пока фрагментарный характер, освещая то одну, то другую сторону процесса. Очевидно, что в ходе дальнейших научных исследований будут даны ответы на многие актуальные вопросы морфогенеза.
2.38. Рост - это увеличение общей массы и размеров организма в процессе развития. Он происходит на клеточном, тканевом, органном и ор-ганизменном уровнях. Увеличение массы в целом организме отражает рост составляющих его структур.
Различают два типа роста: ограниченный и неограниченный. Неограниченный рост продолжается на протяжении всего онтогенеза, вплоть до смерти. Таким ростом обладают, в частности, рыбы. Многие другие позвоночные характеризуются ограниченным ростом, т.е. достаточно быстро выходят на плато своей биомассы. Обобщенная кривая зависимости роста организма от времени при ограниченном росте имеет s-образную форму (рис. 8.64).
До начала развития организм имеет некоторые исходные размеры, которые в течение короткого времени практически не изменяются.
Затем начинается медленное, а потом и быстрое возрастание массы. Некоторое время скорость роста может оставаться относительно постоянной и наклон кривой не меняется. Но вскоре происходит замедление роста, а потом увеличение размеров организма прекращается. После достижения этой стадии устанавливается равновесие между расходованием материала и синтезом новых материалов, обеспечивающих увеличение массы.
Рост обеспечивается следующими механизмами:
• увеличением числа клеток;
• увеличением размера клеток;
• увеличением объема и массы неклеточного вещества (рис. 8.65).
В первом случае говорят о пролиферативном росте. Рост большинства тканей у животных происходит путем митотических делений клеток, например рост кожи. В органах, состоящих из функциональных единиц, таких как печень, почки, легкие, также наблюдается пролифе-ративный рост. Количество нефронов в почке и альвеол в легком закладывается в раннем детстве (рис. 8.66). Рост этих органов происходит за счет добавления клеток к уже существующим структурам. В ткани печени возможно не только размножение клеток, но и формирование новых структур, например долек печени. Скорость роста определяется соотношением между пролиферацией клеток и их гибелью.
Пролиферативный рост известен в двух формах: мультипликативный и аккреционный.
Мультипликативный пролиферативный рост характеризуется тем, что обе клетки, возникшие от деления родоначальной, снова вступают в деление (рис. 8.67, А). Число клеток (N) растет в геометрической прогрессии: если n - номер деления, то Nn = 2n. Мультипликативный рост очень эффективен и поэтому в чистом виде почти не встречается или очень быстро заканчивается. У большинства организмов он происходит в эмбриональном и раннем постэмбриональном периоде.
Аккреционный пролиферативный рост заключается в том, что после каждого последующего деления лишь одна из клеток снова делится, тогда как другая прекращает деление (заштрихована, рис. 8.67, Б). При этом число клеток растет линейно: если n - номер деления, то Nn = 2n. Этот тип роста связан с разделением органа на камбиальную и дифференцированную зоны. Клетки переходят из первой зоны во вторую, сохраняя постоянные соотношения между размерами зон. Такой рост характерен для тканей, где происходит обновление клеточного состава. Например, клетки эпителия кишечника, дыхательных путей - одна дочерняя клетка делится, а другая дифференцируется и после выполнения функций погибает.
Третий вариант - аллометрический (дифференциальный) рост. Это означает, что скорость роста неодинакова, во-первых, в различных участках организма и, во-вторых, на разных стадиях развития. Очевидно, что дифференциальный рост оказывает огромное влияние на морфогенез. Благодаря нему достигается видоспецифичность размеров и строения организмов. Наглядный пример такого рода представлен на рис. 8.68. Самец манящего краба Uca pugnax первоначально на первой паре ног имеет клешни, каждая из которых составляет 8% от общей массы тела. По мере роста краба одна клешня увеличивается гораздо быстрее другой, и у взрослого самца достигает 38% его массы. Она служит ему для защиты и угрозы. У самок этого вида масса клешни по-прежнему составляет примерно 8% от массы тела.
2.39. Во взрослом организме продолжаются процессы развития, связанные с делением и ростом клеток. Нарушение этих процессов влечет за собой образование злокачественных опухолей. К образованию опухоли, называемой иначе бластомой, приводит избыточное, обычно не координированное со всем организмом, размножение (пролиферация) атипических клеток, в которых нарушены нормальные процессы жизнедеятельности. Эти клетки не достигают развития, свойственного им в данной ткани, и начинают размножаться, не достигнув дифференцированного состояния.
Различают злокачественные и доброкачественные опухоли.
Для клеток злокачественной опухоли характерна способность к инвазивному росту, т. е. прорастанию в нормальные ткани, а также свойства мстастазировать и выделять продукты распада. Под мстастазированием понимается образование вторичных узлов опухолевого роста в органах, отдаленных от места возникновения первичной опухоли. Такие узлы (метастазы) развиваются в результате переноса и имплантации клеток исходного новообразования. Злокачественные новообразования, развивающиеся из эпителиальных тканей, называют раком (cancer), из тканей мезодермального происхождения - саркомой (sarcoma).
Рост доброкачественных опухолей не сопровождается прорастанием и разрушением окружающих тканей, но доброкачественные опухоли могут малигнизироваться, т. е. превращаться в злокачественные.
Злокачественные опухоли обнаружены у животных, относящихся к различным типам, и во всех классах позвоночных. Есть указание на существование опухолей у насекомых. Описан злокачественный рост у рыб, земноводных и пресмыкающихся. Подробно изучались злокачественные опухоли у птиц, например,- у кур.
2.40. Регенерация (от лат. regeneratio - возрождение) - процесс восстановления биологических структур в ходе жизнедеятельности организма. Регенерация поддерживает строение и функции организма, его целостность.
Регенерационные процессы реализуются на разных уровнях организации - молекулярно-генетическом, субклеточном, клеточном, тканевом, органном, организменном.
На молекулярно-генетическом уровне осуществляется репликация ДНК, ее репарация, синтез новых ферментов, молекул АТФ и т.д. Все эти процессы входят в обмен веществ клетки.
Различают два вида регенерации: физиологическую и репаративную.
Физиологическая (гомеостати-ческая) регенерация представляет собой процесс восстановления структур, которые снашиваются в процессе нормальной жизнедеятельности. Благодаря ей поддерживается структурный гомеостаз и обеспечивается возможность постоянного выполнения органами их функций.
С общебиологической точки зрения физиологическая регенерация, как и обмен веществ, является проявлением такого важнейшего свойства жизни, как самообновление.
Самообновление обеспечивает существование организма во времени и пространстве. В его основе лежит биогенная миграция атомов.
На внутриклеточном уровне значение физиологической регенерации особенно велико для так называемых «вечных» тканей, утративших способность к регенерации путем деления клеток. В первую очередь это относится к нервной ткани, сетчатке глаза.
Физиологическая регенерация присуща организмам всех видов, но особенно интенсивно она протекает у теплокровных позвоночных, так как у них вообще очень высока интенсивность функционирования всех органов по сравнению с другими животными.
2.41. (2.42.) Репаративная регенерация (от лат. reparatio - восстановление) - восстановление биологических структур после травм и действия других повреждающих факторов. К таким факторам могут быть отнесены ядовитые вещества, болезнетворные агенты, высокие и низкие температуры (ожоги и обморожения), лучевые воздействия, голодание и т.д.
Способность к регенерации не имеет однозначной зависимости от уровня организации, хотя давно уже было замечено, что более низко организованные животные обладают лучшей способностью к регенерации наружных органов. Это подтверждается удивительными примерами регенерации гидры, планарий, кольчатых червей, членистоногих, иглокожих, низших хордовых, например асцидий. Из позвоночных наилучшей регенерационной способностью обладают хвостатые земноводные. Известно, что разные виды одного и того же класса могут сильно отличаться по способности к регенерации. Кроме того, при изучении способности к регенерации внутренних органов оказалось, что она значительно выше у теплокровных животных, например у млекопитающих, по сравнению с земноводными.
Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении (фактически речь идет об ампутации краевой части структуры). Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган. Есть предположение, что невозможность регенерации конечностей и других наружных органов у млекопитающих носит приспособительный характер и обусловлена отбором, поскольку при активном образе жизни требующие сложной регуляции морфогенетические процессы затрудняли бы существование. Ряд исследователей полагает, что организмы первоначально имели два способа исцеления от ран - действие иммунной системы и регенерацию. Но в ходе эволюции они стали несовместимы друг с другом. Хотя регенерация может показаться лучшим выбором, для нас более важны Т-клетки иммунной системы - основное оружие против опухолей. Регенерация конечности становится бессмысленной, если одновременно в организме бурно развиваются раковые клетки. Получается, что иммунная система, защищая нас от инфекций и рака, одновременно подавляет наши способности к восстановлению.
Объем репаративной регенерации может быть очень разным.
Существует несколько способов репаративной регенерации. К ним относят эпиморфоз, морфаллаксис, регенерационную гипертрофию, компенсаторную гипертрофию, заживление эпителиальных ран, тканевую регенерацию.
Эпиморфоз представляет собой наиболее очевидный способ регенерации, заключающийся в отрастании нового органа от ампутационной поверхности. Иллюстрацией может служить регенерация хрусталика или конечности у хвостатых амфибий.
Морфаллаксис - регенерация путем перестройки регенерирующего участка. Примером служит регенерация гидры из кольца, вырезанного из середины ее тела, или восстановление планарии из одной десятой или двадцатой ее части.
Регенерационная гипертрофия (эндоморфоз) относится к внутренним органам. Этот способ регенерации заключается в увеличении размеров остатка органа без восстановления исходной формы. Иллюстрацией служит регенерация печени позвоночных, в том числе млекопитающих.
Компенсаторная (викарная) гипертрофия заключается в изменениях в одном из органов при нарушении в другом, относящемся к той же системе органов. Пример - гипертрофия в одной из почек при удалении другой или увеличение лимфатических узлов при удалении селезенки.
Восстановление отдельных мезодермальных тканей, таких как мышечная и скелетная, называют тканевой регенерацией.
Эпителизация при заживлении ран с нарушенным эпителиальным покровом идет примерно одинаково, независимо от того, будет далее происходить регенерация органа путем эпиморфоза или нет. Эпидер-мальное заживление раны у млекопитающих в том случае, когда раневая поверхность высыхает с образованием корки.
2.43. Один из наиболее интригующих в теории регенерации - вопрос об ее клеточных источниках. Откуда берутся или как возникают недифференцированные клетки бластемы, морфологически сходные с мезен-химными?
В настоящее время говорят о трех возможных источниках регенерации. Первый - это дедифференцированные клетки, второй - региональные стволовые клетки и третий - стволовые клетки из других структур, мигрировавшие к месту регенерации.
Большинство исследователей признают дедифференцировку и метаплазию при регенерации хрусталика у амфибий. Теоретическое значение этой проблемы заключается в допущении возможности или невозможности изменений клеткой ее программы до такой степени, что она возвращается в состояние, когда снова способна делиться и репро-граммировать свой синтетический аппарат.
Наличие региональных стволовых клеток установлено к настоящему времени во многих тканях: в мышцах, кости, эпидермисе кожи, печени, сетчатке и других. Такие клетки обнаружены даже в нервной ткани - в определенных зонах головного мозга. Во многих случаях считают, что источником, из которого образуются дифференцированные клетки в ходе регенерации, являются именно они (регенеративная медицина, регенеративная ветеринария). Предполагается, что по мере увеличения возраста особи численность популяций региональных стволовых клеток сокращается.
Если же в органе не хватает своих региональных стволовых клеток, то в него могут мигрировать клетки из других и дать начало нужной ткани. Недавно показано, что стволовые клетки, изолированные из одной взрослой ткани, могут дать начало зрелым клеткам других клеточных
линий, независимо от назначения классического зародышевого слоя. Так, эндотелий крупных магистральных артерий не имеет собственных запасов стволовых клеток. Его обновление происходит за счет стволовых клеток костного мозга, поступающих в кровоток. Однако сравнительная неэффективность подобных преобразований in vivo (в организме), даже при наличии повреждения ткани, ставит вопрос о том, имеет ли этот механизм физиологическое значение.
Интересно, что среди взрослых стволовых клеток способность к перемене линий наиболее велика у стволовых клеток, которые могут быть культивируемы в среде в течение длительного времени.
2.44. РАНСПЛАНТАЦИЯ КЛЕТОК, ТКАНЕЙ И ОРГАНОВ
Пересадка клеток (в том числе стволовых), тканей и органов находится в центре внимания современной медицины.
Наибольшие успехи достигнуты в клеточной трансплантологии, исторически связанной с переливанием крови, отдельных ее компонентов (эритроцитов, лейкоцитов, тромбоцитов) и трансплантацией костного мозга.
Существуют две главные проблемы трансплантологии:
1. Технические, этические и юридические вопросы заготовки, криоконсервации (замораживания), доставки и пересадки клеток, тканей и органов.
2. Вопросы генетической, иммунологической и морфофункциональной совместимости трансплантата. Так, наибольшее количество поверхностных трансгшантационных HLA-антигенов находится на лимфоидных клетках селезенки, лимфатических узлов и костного мозга, в меньшей степени (по убыванию концентрации) в ткани печени и легких, кишечника, почки, сердечной мышцы, желудка, аорты, мозга. Неравномерное распределение антигенов является одним из патогенетических факторов, объясняющих различный клинический успех при пересадке тех или иных органов и тканей.
В любом случае ответная реакция организма на трансплантацию является патологическим процессом, связанным с хирургической травмой, токсическим воздействием наркоза. Кроме того, пересаженная биологическая ткань, даже собственная (аутологичная), ставится в условия, неестественные по отношению к ее обычному месту существования (гетеротопия Вирхова). Р. Вирхов считал гетеротопию одним из основных условий для патологического состояния ткани.
С точки зрения иммунологии различают аутологичный, аллогенный, изогенный и ксеногенный типы трансплантации.
Пути преодоления тканевой несовместимости (формирование толерантности к трансплантату). Преодоление тканевой несовместимости является важнейшей задачей при пересадке органов и тканей. Существуют неспецифические и специфические методы преодоления тканевой несовместимости.
К неспецифическим методам относятся: 1) подавление иммунологической реактивности организма реципиента с помощью различных иммунодепрессантов (циклоспорин А, цитостатические препараты, антилимфоцитарная сыворотка, облучение γ-лучами и лучами Рентгена); 2) создание иммунологической устойчивости (толерантности) организма-хозяина (реципиента) к трансплантируемым донорским тканям (органам). С этой целью (экспериментально) эмбрионам и новорожденным вводят различные дозы трансплантата, далее во взрослом состоянии - ткани.
Специфическим методом является, например, подбор иммунологически совместимых пар донора и реципиента.
2.45. Установлено, что причиной опухоли могут быть разнообразные этиологические факторы - главные, предрасполагающие и способствующие. Главные этиологические факторы - канцерогены - вызывают изменения генетического аппарата клетки (обладают
мутагенной активностью), способствуют ее опухолевой трансформации. Комитет экспертов ВОЗ еще в 1979 г. дал четкое определение понятия «канцероген»: «Канцероген - это агент, который в силу своих физических или химических свойств может вызвать необратимое изменение или повреждение в тех частях генетического аппарата, которые осуществляют гомеостатический контроль над соматическими клетками».
Канцерогенные факторы подразделяют на экзогенные и эндогенные. Среди экзогенных выделяют физические, биологические и химические канцерогены.
Дата добавления: 2015-09-27 | Просмотры: 1221 | Нарушение авторских прав
|