АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Глава 8. СИСТЕМА КИСЛОРОДНОГО ОБЕСПЕЧЕНИЯ ОРГАНИЗМА
Непрерывно идущие в каждой клетке организма окислительно-восстановительные реакции нуждаются в постоянном притоке субстратов окисления (углеводов, липидов и аминокислот) и окислителя — кислорода. В организме имеются внушительные запасы питательных веществ — углеводные и жировые депо, а также огромный запас белков в скелетных мышцах, поэтому даже сравнительно длительное (в течение нескольких суток) голодание не приносит человеку существенного вреда. А вот запасов кислорода в организме практически нет, если не считать небольшого количества, содержащегося в мышцах в форме оксимиоглобина, поэтому без его поставки человек способен выжить лишь 2—3 мин, после чего наступает так называемая «клиническая смерть». Если в течение 10—20 мин снабжение клеток мозга кислородом не восстановится, в них произойдут такие биохимические изменения, которые нарушат их функциональные свойства и приведут к скорой гибели всего организма. Другие клетки тела при этом могут и не пострадать в такой степени, но нервные клетки крайне чувствительны к недостатку кислорода. Вот почему одной из центральных физиологических систем организма является функциональная система кислородного обеспечения, и состояние именно этой системы чаще всего используется для оценки «здоровья».
Понятие о кислородном режиме организма. Кислород проходит в организме достаточно длинный путь (рис. 18). Попадая внутрь в виде молекул газа, он уже в легких принимает участие в целом ряде химических реакций, обеспечивающих его дальнейшую транспортировку к клеткам тела. Там, попадая в митохондрии, кислород окисляет разнообразные органические соединения, превращая их в конечном счете в воду и углекислоту. В таком виде кислород и выводится из организма.
Что заставляет кислород из атмосферы проникать в легкие, затем — в кровь, оттуда — в ткани и клетки, где уже он вступает в биохимические реакции? Очевидно, что существует некая сила, определяющая именно такое направление перемещения молекул этого газа. Эта сила — градиент концентраций. Содержание кислорода в атмосферном воздухе намного больше, чем в воздухе внутрилегочного пространства (альвеолярном). Содержание кислорода в альвеолах — легочных пузырьках, в которых происходит газообмен воздуха с кровью, — намного выше, чем в венозной крови. Ткани содержат кислорода гораздо меньше, чем артериальная кровь, а митохондрии содержат незначительное количество кислорода, поскольку поступающие в них молекулы этого газа немедленно вступают в цикл окислительных реакций и превращаются в химические соединения. Вот этот каскад постепенно понижающихся концентраций, отражающий градиенты усилия, в результате которых кислород из атмосферы проникает в клетки тела, и принято называть кислородным режимом организма (рис.19). Вернее, кислородный режим характеризуется количественными параметрами описанного каскада. Верхняя ступенька каскада характеризует содержание кислорода в атмосферном воздухе, который во время вдоха проникает в легкие. Вторая ступенька — содержание О2 в альвеолярном воздухе. Третья ступенька — содержание О2 в артериальной крови, только что обогащенной кислородом. И наконец, четвертая ступенька — напряжение кислорода в венозной крови, которая отдала содержавшийся в ней кислород тканям. Эти четыре ступеньки образуют три «пролета», которые отражают реальные процессы газообмена в организме. «Пролет» между 1-й и 2-й ступеньками соответствует легочному газообмену, между 2-й и 3-й ступеньками — транспорту кислорода кровью, а между 3-й и 4-й ступеньками — тканевому газообмену. Чем больше высота ступеньки, тем больше перепад концентраций, тем выше градиент, при котором кислород транспортируется на этом этапе. С возрастом увеличивается высота первого «пролета», то есть градиент легочного газообмена; второго «пролета», т.е. градиент транспорта 02 кровью, тогда как высота третьего «пролета», отражающего градиент тканевого газообмена, снижается. Возрастное уменьшение интенсивности тканевого окисления является прямым следствием снижения с возрастом интенсивности энергетического обмена.
Рис. 18. Транспорт кислорода у человека (направление показано стрелками)
Рис. 19. Каскад напряжений кислорода во вдыхаемом воздухе (I), в альвеолах (А), артериях (а) и венах (К) У мальчика 5 лет, подростка 15 лет и взрослого 30 лет
Таким образом, усвоение кислорода организмом происходит в три стадии, которые разделены в пространстве и во времени. Первая стадия — нагнетание воздуха в легкие и обмен газов в легких — носит еще название внешнего дыхания. Вторая стадия — транспорт газов кровью — осуществляется системой кровообращения. Третья стадия — усвоение кислорода клетками организма — называется тканевым, или внутренним дыханием.
Дата добавления: 2015-10-19 | Просмотры: 452 | Нарушение авторских прав
|