АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Внутренние факторы

Прочитайте:
  1. Акселерация. Факторы, влияющие на физическое развитие ребенка.
  2. Биологические мотивации как внутренние детерминанты поведения. Интеграция регуляторных механизмов в процессе реализации биологических мотиваций.
  3. Вазопрессорные факторы
  4. Виброакустические факторы
  5. Внехромосомные факторы наследственности.
  6. Внешнее дыхание. Биомеханика вдоха и выдоха. Факторы, обуславливающие эластическую тягу легких. Роль сурфактанта в вентиляции легких.
  7. Внутренние (висцеральные) анализаторы
  8. ВНУТРЕННИЕ АНАЛИЗАТОРЫ.
  9. Внутренние женские половые органы.
  10. ВНУТРЕННИЕ И ВНЕШНИЕ ПРИЧИНЫ БОЛЕЗНИ КОЖИ. БОЛЕЗНИ, КОТОРЫЕ ВЫЗВАНЫ БАКТЕРИЯМИ, СТАФИЛОКОКАМИ, СТРЕПТОКОКАМИ

1) Конфигурация и взаимное расположение океанов и континентов — появление континента в полярных широтах может привести к покровному оледенению, и изъятию значительного количества воды из ежедневного круговорота, также образование суперконтинентов Пангей всегда сопровождался общей аридизацией климата, нередко на фоне оледенения, также расположение континентов оказывает большое влияние на систему океанских течений;

2) Извержения вулканов способны вызвать кратковременное изменение климата, вплоть до вулканической зимы;

3) Альбедо( характеристика отражательной способности поверхности ) земной атмосферы и поверхности влияет на количество отражённых солнечных лучей;

4) Воздушные массы (в зависимости от свойств воздушных масс определяется сезонность выпадения осадков и состояния тропосферы);

5) Влияние океанов и морей (если местность отдалена от морей и океанов, то увеличивается континентальность климата. Наличие рядом океанов смягчает климат местности, исключение — наличие холодных течений);

6) Характер подстилающей поверхности (рельеф, особенности ландшафта, наличие и состояние ледовых покровов);

7) Деятельность человека (сжигание топлива, выброс различных газов, селькохозяйственная деятельность,уничтожение лесов, урбанизация);

8) Тепловые потоки планеты.

 

22. Погода, ее определение. Клинические типы погоды по Г.Б. Федорову. Влияние на организм. Сезонные и метеотропные заболевания, их профилактика.


Пого́да — совокупность значений метеорологических элементов и атмосферных явлений, наблюдаемых в определённый момент времени в той или иной точке пространства. Понятие «Погода» относится к текущему состоянию атмосферы, в противоположность понятию «Климат», которое относится к среднему состоянию атмосферы за длительный период времени. Если нет уточнений, то под термином «Погода» понимают погоду на Земле. Погодные явления протекают в тропосфере (нижней части атмосферы) и в гидросфере. Погоду можно описать давлением, температурой и влажностью воздуха, силой и направлением ветра, облачностью, атмосферными осадками, дальностью видимости, атмосферными явлениями (туманами, метелями, грозами) и другими метеорологическими элементами.

Климатически типы погоды (по Федорову):

Тип погоды Межсуточные колебания Скорость движения воздуха, м/с
Температура, С Атмосф давл, мм рт ст
Оптимальный Не более 2 Не более3,0 Не более3,0
Раздражающий Не более4 Не более6,0 Не более9,0
Острый Более 4 6,0 Более 9,0

Федоров (1956) характеризовал погодные условия с учетом осадков, атмосферного давления и межсуточных колебаний метеорологических элементов. Он выделял три типа погоды: оптимальный (I тип), раздражающий (II тип) и острый (III тип).

Оптимальными считаются погоды, благоприятно влияющие на организм человека (щадяще на него действующие). К ним относятся комплексы погод преимущественно с относительно ровным ходом метеорологических элементов, умеренно влажные или сухие, маловетреные, преимущественно солнечные с межсуточной изменчивостью температуры в пределах 2 °С и атмосферного давления в пределах 4 гПа.

К раздражающим относятся погоды преимущественно с нарушением плавного хода одного или нескольких метеорологических элементов: солнечные и пасмурные, сухие и влажные, когда межсуточная изменчивость атмосферного давления не превышает 8 гПа, температуры 4 °С, ветер до 9 м/с.

К острым погодам относятся преимущественно с резким перепадом значений метеорологических элементов, когда атмосферное давление поднимается или падает более чем на 8 гПа, температура более чем на 4 °С, дождевые, пасмурные, ветреные (более 9 м/с), циклонические.

23. Проблема акклиматизации. Гигиенические мероприятия, способствующие акклиматизации на севере и юге.

 

24. Физико-химические свойства воды. Физиолого-гигиеническое значение воды. Нормы водопотребления.


Наиболее важны следующие свойства:

Чистота воды – наличие в ней примесей, бактерий, солей тяжелых металлов, хлора и др.

Поверхностное натяжение – это степень сцепления молекул воды друг с другом. Этот параметр определяет степень усвояемости воды организмом. Чем более «жидкая» вода, тем меньше энергии требуется организму для разрыва молекулярных связей и осуществления взаимодействия. Поверхностное натяжение воды в среднем сейчас составляет около 73 д/см. Поверхностное натяжение клетки нашего организма около 43 д/см.

Жесткость воды – наличие в ней солей. От жесткости зависит также степень взаимодействия воды с другими веществами.

Кислотно-щелочное равновесие воды. Основные жизненные среды (кровь, лимфа, слюна, межклеточная жидкость, спинномозговая жидкость и др.) имеют слабощелочную реакцию (в среднем 7,5 ед.). Кислотно-щелочное равновесие воды в настоящее время колеблется от 3,0 ед. до 7,0 ед. При сдвигах их в кислую сторону, меняются биохимические процессы, организм закисляется. Это ведет к развитию болезней.

Окислительно-восстановительный потенциал воды (ОВП). Это способность воды вступать в биохимические реакции. Она определяется наличием свободных электронов. Это очень важный показатель для организма человека. ОВП межклеточных жидкостей в организме в среднем равно -50 – (-100).

ОВП воды в среднем равно +55 – (+630).

Структура воды. Вода представляет собой жидкий кристалл. Диполи молекулы воды ориентируются в пространстве определенным образом, соединяясь в структурные конгломераты. Это позволяет жидкости составлять единую биоэнергоинформационную среду. Вся жидкость в организме структурирована. Только в таком состоянии она способна проводить энергетические импульсы. Когда вода находится в состоянии твердого кристалла, молекулярная решетка жестко ориентирована. При таянии разрываются жесткие структурные молекулярные связи. И часть молекул, высвобождаясь, образует текучесть воды.

Минерализация воды. Наличие в воде макро- и микроэлементов необходимо для здоровья. Жидкости организма представляют собой электролиты, и восполнение минерального состава идет, в том числе, за счет воды. Необходимо учитывать, что легче в организме усваиваются минералы органического происхождения.

Вода – это общий показатель активности физиологических систем, фон и среда, в которой протекают все жизненно важные процессы. Неслучайно в организме человека содержание воды приближается к 60 % от всего веса тела. Установлено, что процессы старения связаны с потерей воды клетками.

Необходимо отметить, что реакции гидролиза, а также все окислительно-восстановительные реакции протекают активно только в водных растворах.

Вода принимает активное участие в так называемом водно-солевом обмене. Процессы пищеварения и дыхания протекают нормально в случае достаточного количества воды в организме. Велика роль воды и в выделительной функции организма, что способствует нормальному функционированию мочеполовой системы.

Велика роль воды и в процессах теплорегуляции организма. Она участвует, в частности, в одном из важнейших процессов – процессе потоотделения.

Необходимо отметить, что с водой в организм поступают минеральные вещества, притом в такой форме, когда они усваиваются почти полностью. Роль воды как источника минеральных солей сейчас общепризнана. Это так называемое фармакологическое значение воды. А Минеральные соли в воде находятся в виде ионов, что благоприятно для их усвоения организмом. Макро– и микроэлементы в продуктах питания находятся в виде комплексных соединений, которые даже под влиянием желудочно-кишечного сока плохо диссоциируют и поэтому хуже усваиваются.

Вода – это универсальный растворитель. Она растворяет все физиологически активные вещества. Вода – это жидкая фаза, имеющая определенную физическую и химическую структуру, которая и определяет ее способность как растворителя. Живые организмы, потребляющие воду с разной структурой, развиваются и растут по-разному. Поэтому структуру воды можно рассматривать как важнейший биологический фактор. Структура воды может изменяться при ее опреснении. На структуру воды в значительной степени влияет ионный состав воды.

Молекула воды – соединение не нейтральное, а электрически активное. Она имеет два активных электрических центра, которые создают вокруг себя электрическое поле.

Для строения молекулы воды характерны две особенности:

1) высокая полярность;

2) своеобразное расположение атомов в пространстве.

По современным представлениям молекула воды – это диполь, т. е. она имеет 2 центра тяжести. Один – центр тяжести положительных зарядов, другой – отрицательных. В пространстве эти центры не совпадают, они асимметричны, т. е. молекула воды имеет два полюса, создающих вокруг молекулы силовое поле, молекула воды полярна.

В электростатическом поле пространственное расположение молекул воды (структура воды) определяет биологические свойства воды в организме.

Молекулы воды могут существовать в следующих формах:

1) в виде одиночной молекулы воды – это моногидроль, или просто гидроль (Н2О)1;

2) в виде двойной молекулы воды – это дигидроль (Н2О)2;

3) в виде тройной молекулы воды – тригидроль (Н2О)3.

Агрегатное состояние воды зависит от наличия этих форм. Лед обычно состоит из тригидролей, имеющих самый большой объем. Парообразное состояние воды представлено моногидролями, так как значительное тепловое движение молекул при температуре 100 °С нарушает их ассоциацию. В жидком состоянии вода представляет смесь гидроля, дигидроля и тригидроля. Соотношение между ними определяется температурой. Образование ди– и тригидроля происходит вследствие притяжения молекул воды (гидролей) друг к другу.

В зависимости от динамического равновесия между формами различают определенные виды воды.

1. Вода, связанная с живыми тканями, – структурная (льдоподобная, или совершенная, вода), представленная квазикристаллами, тригидролями. Эта вода отличается высокой биологической активностью. Температура ее замерзания –20 °С. Такую воду организм получает только с натуральными продуктами.

2. Свежеталая вода – на 70 % льдоподобная вода. Обладает лечебными свойствами, способствует повышению адаптогенных свойств, но быстро (через 12 ч) теряет свои биологические свойства стимулировать биохимические реакции в организме.

3. Свободная, или обычная, вода. Температура ее замерзания равна 0 °С.

Дегидратация

Содержание воды в организме человека составляет 60 % массы его веса. Организм постоянно теряет оксидационную воду различными путями:

1) с воздухом через легкие (1 м3 воздуха содержит в среднем 8—9 г воды);

2) через почки и кожу.

В целом человек за сутки теряет до 4 л воды. Естественные потери воды должны быть компенсированы введением определенного количества воды извне. Если потери не эквивалентны введению, в организме наступает дегидратация. Недостаток даже 10 % воды может значительно ухудшить состояние, а увеличение степени дегидратации до 20 % может приводить к нарушению жизненных функций и к смерти. Дегидратация более опасна для организма, чем голодание. Без пищи человек может прожить 1 месяц, а без воды – до 3 суток.

Регуляция водного обменаосуществляется с помощью центральной нервной системы (ЦНС) и находится в ведении пищевого центра и центра жажды.

В основе возникновения чувства жажды лежит, видимо, изменение физико-химического состава крови и тканей, в которых происходят нарушения осмотического давления вследствие обеднения их водой, что приводит к возбуждению отделов ЦНС.

Большую роль в регуляции водного обмена играют железы внутренней секреции, особенно гипофиз. Взаимосвязь водного и солевого обмена называют водно-солевым обменом.

Нормы водопотребления определяются:

1) качеством воды;

2) характером водоснабжения;

3) состоянием организма;

4) характером окружающей среды, и в первую очередь температурно-влажностным режимом;

5) характером работы.

Нормы водопотребления складываются из физиологических потребностей организма (2,5—5 л в сутки для отправления физиологических функций) для поддержания жизнедеятельности и воды, необходимой для хозяйственно-коммунальных целей. Последние нормы отражают санитарный уровень населенного пункта.

В сухом и жарком климате, при выполнении интенсивной физической работы физиологические нормы повышаются до 8—10 л в сутки, в условиях сельской местности (при децентрализованном водоснабжении) – до 30—40 л. Нормы водопотребления на промышленном предприятии зависят от температуры окружающей среды производства. Особенно они велики в горячих цехах. Если количество выделяемого тепла составляет 20 ккал в 1 м3 в час, то нормы водопотребления за смену составят 45 л (с учетом душирования). Согласно санитарным стандартам нормы водопотребления регламентируются так:

1) при наличии водопровода и отсутствии ванн – 125—160 л в сутки на человека;

2) при наличии водопровода и ванн – 160—250 л;

3) при наличии водопровода, ванн, горячей воды – 250—350 л;

4) в условиях использования водоразборных колонок —30—50 л.

Сегодня в крупных современных городах водоразбор на душу населения в сутки составляет 450 л и более. Так, в Москве самый высокий уровень водопотребления – до 700 л. В Лондоне – 170 л, Париже – 160 л, Брюсселе – 85 л.

Вода является социальным фактором. От количества и качества воды зависят социальные условия жизни и уровень заболеваемости. По данным ВОЗ до 500 млн заболеваний в год, возникающих на Земле, связаны с качеством воды и уровнем водопотребления.

Факторы, формирующие качество воды, можно разделить на 3 большие группы:

1) факторы, определяющие органолептические свойства воды;

2) факторы, определяющие химические свойства воды;

3) факторы, определяющие эпидемиологическую опасность воды.

Факторы, определяющие органолептические свойства воды

Органолептические свойства воды формируют природные и антропогенные факторы. Запах, привкус, окраска и мутность являются важными характеристиками качества питьевой воды. Причины появления запахов, привкуса, цветности и мутности воды весьма разнообразны. Для поверхностных источников это в первую очередь почвенные загрязнения, поступающие с током атмосферных вод. Запах и привкус могут быть связаны с цветением воды и с последующим разложением растительности на дне водоема. Вкус воды определяется ее химическим составом, соотношением отдельных компонентов и количеством этих компонентов в абсолютных величинах. Это особенно относится к высокоминерализованным подземным водам в силу повышенного содержания в них хлоридов, сульфатов натрия, реже – кальция и магния. Так, хлорид натрия обуславливает соленый вкус воды, кальций – вяжущий, а магний – горьковатый. Вкус воды определяется и газовым составом: 1/3 всего газового состава составляет кислород, 2/3 – азот. В воде очень небольшое количество углекислого газа, но роль его велика. Углекислота может быть представлена в воде в различных формах:

1) растворенной в воде с образованием угольной кислоты CO2 + H2O = H2CO3;

2) диссоциированной угольной кислоты H2CO3 = H + HCO3 = 2H + CO3 с образованием бикарбонат иона HCO3 и CO3 – карбонат иона.

Это равновесие между различными формами углекислоты определяется рН. В кислой среде, при рН = 4 присутствует свободная углекислота – СО2. При рН = 7—8 присутствует ион НСО3 (умеренно щелочная). При рН = 10 присутствует ион СО3 (среда щелочная). Все эти компоненты в разной степени определяют вкус воды.

Для поверхностных источников основной причиной появления запахов, привкуса, цветности и мутности являются почвенные загрязнения, поступающие со стоком атмосферных вод. Неприятный привкус воды характерен для широко распространенных высокоминерализованных вод (особенно на юге и юго-востоке страны) преимущественно в силу повышенного содержания концентрации хлоридов и сульфатов натрия, реже кальция и магния.

Окраска (цветность) природных вод чаще зависит от присутствия гуминовых веществ почвенного, растительного и планктонового происхождения. Строительство крупных водохранилищ с активными процессами развития планктона способствует появлению в воде неприятных запахов, привкусов и цветности. Гуминовые вещества безвредны для человека, но ухудшают органолептические свойства воды. Их трудно удалить из воды, к тому же они обладают высокой сорбционной способностью.

 

25. Эпидемиологическое значение воды. Вода как причина массовых инфекционных заболеваний. Профилактика водных эпидемий.

Вода — один из путей передачи возбудителей заболеваний, в частности инфекционных. Инфекции, передающиеся преимущественно через воду, называются водными. К ним относятся: брюшной тиф, дизентерия, холера, инфекционный гепатит, полиомиелит, а также инфекционные болезни животных - туляремия и лептоспирозные заболевания. Передаются через воду заболевания кожных покровов и слизистых оболочек (трахома, чесотка, грибковые заболевания, аденовирусные конъюнктивиты и др.). Заражение ими возможно при использовании одной и той же воды, при мытье и купании в ванных и бассейнах. Вода может играть важную роль и в передаче возбудителей ряда зоонозных, главным образом среди животных (сап, ящур, сальмонеллезы, сибирская язва).

Загрязнение воды патогенными микробами происходит многими путями. Наиболее распространенный из них — спуск в водоемы неочищенных сточных вод, в частности инфекционных больниц, ветеринарных лечебниц, промышленных предприятий, перерабатывающих животное сырье, и банно-прачечных предприятий. Фекальное загрязнение водоемов, в частности колодцев, может вызываться кроме этого поверхностными водами в периоды ливневых дождей и таяния снегов, а также почвенными водами, если в них проникают нечистоты из выгребных ям.

Выживаемость некоторых патогенных микроорганизмов в воде

Возбудители Среда обитания        
  Колодез­ная вода (чистая) Речная вода Стерильная вода Лед Морская вода
Бактерии брюш­ного тифа и паратифов 107-540 дней 7-21 день 167-365 дней Несколь­ко месяцев 14-15 дней
Бактерии дизенте­рии 10-11 дней 5-6 дней 1-2 месяца 17-24 дня 1-12 дней
Холерный вибри­он - От 7 дней до несколь­ких месяцев Свыше 12 месяцев Несколь­ко месяцев До 3 месяцев
Бактерии туляре­мии 12-60 дней 7-31 день 3-15 дней 32 дня -
Лептоспиры - 14-21 день До 7 дней - -
Возбудители бру­целлеза - - До 2 месяцев - -
Споры сибирской язвы - - Годы - -

 

При центральном водоснабжении становится возможным загрязнение воды не только в месте ее забора (открытые водоемы), но и в головных сооружениях, а также в водоразводящей сети, чаще всего в случаях нарушения герметичности водопроводных труб и других аварий или подсоединения технических водопроводов к водопроводам питьевым.

Водоемы могут загрязняться и выделениями диких животных, главным образом грызунов, которые с мочой и фекалиями могут выделять в воду возбудителей таких, например, болезней, как туляремия и лептоспирозы. Вода, загрязненная патогенными микробами, может вызвать массовые заболевания (эпидемии). Чаще других заражаются поверхностные воды, редко - артезианские.

Сравнительная гигиеническая оценка поверхностных и подземных источников водоснабжения

Факторы, влияющие на качество воды Виды источников водоснабжения    
  Поверхностные Подземные  
    грунтовые артезианские
  Влияние    
Жизнедеятельность населения (плотность, род занятий) Очень большое Большое Незначитель­ное
Природные (осадки, климат, сезонность) Очень большое Большое Незначитель­ное
Бактериальное загряз­нение Очень частое Редкое Очень редкое
Изменяемость свойств воды Очень значительное Значительное Весьма незна­чительное

Эти обстоятельства необходимо учитывать при выборе мест для купания.

Показатели бактериологического загрязнения воды:

микробное число воды — общее количество микробов, содержащихся в 1 мл воды;

титр кишечной палочки — наименьший объем воды, в котором обнаруживается одна кишечная палочка;

индекс кишечной палочки — количество кишечных палочек в 1 л воды.

Микробное число воды показывает, насколько благоприятны или неблагоприятны условия для жизни микробов. В норме в 1 мл водопроводной воды не должно быть более 100, а в колодезной — более 1000 микробов. В бассейнах допускается до 1000 микробов в 1 мл воды.

Кишечная палочка, обычно обитающая в толстом кишечнике человека и животных, служит показателем свежего загрязнения воды экскрементами животных и человека. В соответствии с гигиеническими нормами титр кишечной палочки для водопроводной питьевой воды установлен не менее 300 мл (только в этом количестве, а не в меньшем допускается обнаружение одной кишечной палочки). Индекс кишечной палочки — 3 (наличие в 100 мл воды не более трех кишечных палочек). Для колодезной воды титр кишечной палочки не должен быть менее 100. Вода бассейнов должна соответствовать качеству питьевой воды, но для нее допускается титр 100.

показателям качества воды является также наличие в ней яиц гельминтов. В питьевой воде и воде крытых бассейнов яйца гельминтов должны отсутствовать. В открытых бассейнах допускается не более 1 яйца гельминта в 1 м3 воды.

Флора и фауна воды. ГОСТ «Вода питьевая» не допускает содержания в питьевой воде видимых на глаз водных организмов.

Источники водоснабжения. Основные источники водоснабжения — закрытые водоемы (подземные воды) и открытые (реки, озера, пруды, водохранилища).

Приводим гигиенические требования к качеству источников централизованного хозяйственно-питьевого водоснабжения.

Закрытые водоисточники. Подземные воды образуются преимущественно за счет проникновения в почву атмосферных осадков, которые, фильтруясь почвой, скапливаются в рыхлых ее породах (песок и др.), расположенных на водонепроницаемых грунтах (глина, гранит и др.). В зависимости от глубины залегания водоносных слоев подземные воды делятся на грунтовые и межпластовые. Грунтовые воды залегают на первом водонепроницаемом грунте, они наиболее близки к поверхности почвы и не защищены сверху водонепроницаемым слоем почвы. Поэтому они легко загрязняются стоками и отбросами, просачивающимися через почву с поверхности с дождевыми и талыми водами. На территории населенных пунктов грунтовые воды, как правило, бывают непригодными для водоснабжения.

Межпластовые воды располагаются в глубоких водоносных слоях, между двумя водонепроницаемыми слоями грунта.

Они наиболее надежные и безопасные в гигиеническом отношении источники водоснабжения населения.

Подземные воды, выходящие на поверхность, называются ключевыми, или родниковыми. Они отличаются наибольшей чистотой и высокими вкусовыми качествами. В них растворены содержащиеся в почве минеральные соли и углекислый газ, выделяющийся при разложении органических веществ. Поэтому эти воды более минерализованы и насыщены углекислотой, чем вода открытых водоемов, но одновременно они жестче, а их температура ниже.

Открытые водоисточники. Вода открытых водоемов отличается низкой минерализацией. Ее физические свойства обычно хуже, чем у воды из подземных источников. Ее химический состав, физические свойства и бактериальная загрязненность непостоянны и зависят от времени года и ряда местных условий. Во время половодья и обильных дождей в них стекают массы воды, смывающие с поверхности почвы различные загрязняющие ее вещества и микроорганизмы (органические вещества, бактерии). Это приводит к резкому ухудшению органолептических свойств такой воды. Очень часто открытые водоисточники используются для сброса промышленных, сельскохозяйственных и бытовых отходов.

Поэтому межпластовые воды предпочтительнее (как по качеству, так и по безопасности), и их можно употреблять для питья в натуральном виде, тогда как вода открытых водоемов

и грунтовые воды требуют предварительной очистки и обеззараживания.

Очистка воды. Это сложный и многоэтапный процесс. Первый этап — очистка воды от взвешенных частиц отстаиванием в специальных отстойниках (горизонтальных и вертикальных) и фильтрацией. Для ускорения этих процессов применяется коагуляция — очистка воды с помощью специальных химических соединений — коагулянтов. В качестве коагулянта чаще всего используется сернокислый алюминий (глинозем), который, вступая в реакцию с солями кальция и магния, образует с ними гидраты в виде хлопьев, оседающих на дно очистных сооружений.

После коагуляции вода фильтруется. Для этого применяются различные фильтры: прямоугольные резервуары площадью 50— 100 м2, загруженные речным кварцевым песком на высоту 0,6—1 м, под которыми находятся поддерживающий слой гравия и дренажные трубы для отвода профильтрованной воды. На поверхности песка скапливаются мелкие хлопья коагулянта, не успевшие осесть в отстойнике, которые уменьшают диаметр пор между песчинками и повышают задерживающую способность фильтра. После 8— 12 ч работы фильтр промывается обратным током воды.

В результате очистки вода делается прозрачной, бесцветной, устраняются запахи, некоторые вредные примеси, задерживаются яйца гельминтов и на 95—98% бактерии.

Дезинфекция воды. Это освобождение ее от возбудителей различных инфекционных заболеваний. Наиболее распространенный способ дезинфекции воды — хлорирование газообразным хлором. Для этого применяются хлораторы, обеспечивающие дозировку и непрерывную подачу хлора в резервуары с чистой профильтрованной водой или непосредственно в водопроводную сеть. Хлорирование - один из самых старых, простых, дешевых и достаточно надежных способов обеззараживания воды.

Для обеззараживания воды применяются также озонирование и обработка ультрафиолетовыми лучами. Бактерицидное действие озона сильнее, чем хлора. Озонирование улучшает вкус и органолептические свойства воды. Однако это более дорогой способ, требующий сложной аппаратуры, тщательного ухода за ней и очень хорошей предварительной очистки воды фильтрацией. Поэтому широкого распространения он не получил, как и обеззараживание воды УФ лучами.

Очистка и обеззараживание воды в полевых условиях. В туристском походе могут применяться те же способы, что и на водопроводных станциях, но в более упрощенном виде. Освобождение воды от взвешенных веществ достигается ее отстаиванием в течение 2— 3 ч или фильтрованием с помощью простейших фильтров (из песка, угля). Самый простой и надежный способ обеззараживания воды в походе — ее кипячение в течение 5 мин. В полевых условиях может применяться и хлорирование воды, лучше после фильтрации. Для этого используют хлорную известь.

Доза хлора устанавливается опытным путем. Необходимо, чтобы в 1 л воды находилось 0,3-0,4 мг остаточного хлора в течение 30 мин контакта воды с хлором — летом и 1—2 ч — зимой. Нормирование качества питьевой воды после хлорирования представлено в таблице 16.

Можно хлорировать воду непосредственно в шахтном колодце. Для этого после определения в нем объема воды вносят раствор хлорной извести из расчета 1 мл 1%-ного раствора на 1 л воды.

Хранение и разбор питьевой воды. Согласно санитарным правилам спортивные сооружения снабжаются кипяченой остуженной водой, которая должна храниться в специальных металлических бачках емкостью 25 - 30 л или в графинах. Ежедневно вода заменяется свежей, а сосуды промываются.

Если баки не чистятся и доступны загрязнению извне, то кипяченая вода может оказаться более опасной в эпидемиологическом отношении, чем сырая. Большое гигиеническое значение имеет способ разбора воды: желательно использование пластиковых стаканчиков или фонтанчиков. Воду пьют прямо из струи, бьющей вверх под напором воды в баке или под давлением водопроводной воды. Струя должна иметь определенный наклон, исключающий обратное попадание воды на трубку, из которой она вытекает, что в значительной мере зависит от давления воды.

Методика эпидемиологического анализа сводится к тому, что, собрав данные, характеризующие динамику заболеваемости, территориальное распределение заболеваний, возрастной, профессиональный и половой состав заболевших, вычислив показатели заболеваемости, очаговости и пр. Устанавливают, насколько эти данные соответствуют тем признакам, которые считаются характерными для острых водных эпидемий

Считаем целесообразным дать некоторые рекомендации по сбору и оценке некоторых из упомянутых показателей.

1.При установлении динамики заболеваемости следует использовать такой показатель как день заболевания, а не такие показатели как день обращения за медицинской помощью, день госпитализации или постановки диагноза. Тщательной проверке следует подвергнуть случаи выходящие за рамки предполагаемых хронологических рамок вспышки. Особенно важное значение имеет уточнение даты заболевания при инфекциях с постепенным началом заболевания - например, брюшной тиф и паратифы.

2. Этиологический диагноз. Учитывая, что полиэтилогичность является одним из признаков водной эпидемии, следует собрать данные не только о виде выделенного возбудителя, но и о его фаго-, серо-, био-вариантах.

3.Анализ территориального распространения заболеваний имеет важнейшее значение в диагностике водных эпидемий. Соответствие территории, население которой охвачено эпидемией, и территорией получающей воду из того или иного водоисточника - один из надежнейших признаков и острых хронических эпидемий. Анализ этого вопроса включает два основных элемента. Первый из них - уточнения места жительства, места работы, места временного пребывания заболевших. Следует помнить, что часть лиц фактически проживает не по месту своей официальной прописки, а в других местах. Кроме того, заражение может произойти не по месту жительства заболевшего, а по месту его работы или вообще по месту пребывания по тем или иным надобностям в другой части населенного пункта. В ходе эпидемиологического обследования все эти данные должны быть уточнены в отношении каждого больного и нанесены на план населенного пункта. На втором этапе проводят составление территориального распределения заболеваемости и схемы водоснабжения, пытаясь выявить приуроченность заболеваний к определенным водопроводам (если в населенном пункте несколько разных систем водоснабжения) определенным ветвям водопровода, отдельным водоразборным точкам, отдельным колодцам и т.д.

4.Анализ заболеваемости по возрастному, профессиональному и некоторым другим признакам может иметь определенное значение, поскольку при некоторых вариантах водных эпидемий, распределение больных по этим признакам имеет свои особенности. Наибольшее значение учет этих признаков имеет при выявлении “купальных” и сельскохозяйственных вспышек лептоспирозов, а при водно-питьевых вспышках - при заражении воды в отдельных емкостях, обеспечивающих определенные контингенты.

5.Вычисление интенсивных показателей заболеваемости является важным этапом эпидемиологического обследования водных вспышек и эпидемий. Если заподозрено заражение воды того или иного естественного или искусственного водоисточника, следует установить численность населения пользующегося водой данного водоисточника и, зная число заболевших, вычислить интенсивные показатели заболеваемости. Сравнения этого показателя с аналогичным, полученным в отношении населения пользующегося другим источником водоснабжения, дает в руки эпидемиолога веский аргумент для признания (или определения) водной природы изучаемой эпидемии.

Следует указать, что вычисление этих показателей иногда является довольно трудоемким, поскольку определение численности населения, проживающего на территории той или иной системы водоснабжения, следует проводить путем подворных обходов.

Необходимость применения этого метода можно иллюстрировать следующими личными наблюдениями. Мы изучили эпидемическую вспышку брюшного тифа на территории одного большого города. Заболеваемость была нанесена на план города и сопоставлена с системой водоснабжения. Четко выявилась пораженность территории, снабжавшейся водой не общегородским водопроводом, а отдельной небольшой водопроводной системой. У нас был ряд оснований считать, что заражение воды связано с плохой работой системы обеззараживания воды на головных сооружениях упомянутой системы. Вместе с тем более детальный анализ картографического материала заставил усомниться в этом предположении. Дело в том, что на участке были две улицы, которые, судя по картограмме, имели совершенно различное число заболевших на четной и нечетной сторонах улицы, хотя обе стороны снабжались водой одного и того же водопровода. Возникло предположение, что в данном случае имело место заражение лишь отдельных ветвей водопровода. Все эти сомнения отпали сами собой, когда мы выехали на местность. Оказалось, что сторона улицы, где было большое число заболеваний, была застроена крупными 60-ти квартирными домами. Благополучная сторона улицы состояла из небольших индивидуальных домиков с приусадебными участками. К тому же часть этих домиков была уже снесена (для разработки нам были предоставлены планы 5-летней давности).

При проведении подворных обходов целесообразно также выяснять употребление населением сырой воды. Можно, например, разделить население на 3 группы: а) сырую воду не употребляли совсем; б) употребляли воду изредка; в) преимущественно пользуются сырой водой. Таким же образом можно выделить купальщиков.

Не следует смущаться низким интенсивным показателям заболеваемости среди лиц, употребляющих сырую зараженную воду. Следует помнить, что показатель заболеваемости редко превышает 10%, а иногда может быть и менее 1%. Поэтому, отсутствие заболевании у большинства употреблявших зараженную воду, не должно рассматриваться как доказательство не водного характера заболеваемости.

Если, в целом выявление острых водных эпидемий для опытного эпидемиолога, как правило, не представляет трудностей, то диагностика хронических водных эпидемий очень сложная задача. Причиной этого является ограниченное число признаков, характеризующих этот тип заболеваемости. Причины выявления этих эпидемий, такие же, как и острых - тщательный анализ заболеваемости на территории, на которой предполагается наличие хронической водной эпидемии и сравнение этих показателей с данными о соседних территориях с другой системой водоснабжения. Большое значение надо придавать сравнительному изучению сезонности.

Параллельно с изучением эпидемиологических данных следует начать сбор сведений, характеризующих водоисточник, заражение которого предполагается. Прежде всего, следует воспользоваться сведениями о водоисточниках, которыми располагает ЦГСЭН. Интерес представляют санитарные условия водоисточников, под которыми понимают степень плотности населения на данной территории, плотность застройки, благоустройство населенных мест, наличие источников загрязнения (выгреба, поглощающие колодцы, выпуски стоков, бани, прачечные, поля орошения, скотофермы) уровень мероприятий по обеззараживанию стоков. Эти обстоятельства необходимо учитывать при оценке санитарного состояния водоисточников.

Определенное значение имеет санитарно-топографическое изучение водоисточников. Изучению подлежит геологическая структура местности, где находится водоем, размеры водоема, скорость и направление движения воды, связь с источником загрязнения.

При составлении характеристики колодцев учитывают геологию грунта, глубину колодца, запас и скорость возобновления запаса воды, состояние сруба, состояние почвы вокруг колодца, способ забора воды, расстояние от жилых построек.

Все данные о водоисточнике вносят в его паспорт.

Определенное значение имеет органолептическое исследование, включающее определение прозрачности (прозрачной считается вода, если через ее 30 сантиметровый слой можно прочесть шрифт Снеллена), ее цвета, запаха, вкуса / По данным ряда исследователей и в частности Hydson (1962) мутность может служить косвенным показателем микробного, в том числе вирусного загрязнения воды. Станции, дающие очень прозрачную воду, обеспечивают хорошее бактериологическое качество воды и низкую заболеваемость вирусными инфекциями. Имеется параллелизм между показателями заболеваемости гепатитом и степенью осветления воды./. Известен ряд случаев, когда само население обращало внимание на внезапное изменение органолептических свойств воды, предшествовавшее началу эпидемии. В ряде случаев при обследовании водных эпидемий опрос населения о качестве воды позволяет уточнить момент аварии.

Важное значение имеют санитарно-гигиенические данные для выявления связи между объектами, которые могут загрязнять воду (например, выгреба, поглощающие колодцы и др.) и водоисточниками, а также между различными системами водоснабжения (например, технического и питьевого водопроводов). Суть методов по установлению такой связи заключается в том, что в объекты, которые могут служить источником загрязнения, вводят какой-либо индикатор, появление которого в водоисточнике и укажет на наличие такой связи. При этом требуется, чтобы примененный индикатор, во-первых, не мог бы появиться в водоисточнике каким-либо иным путем, кроме как при наличии подозреваемой связи, а во-вторых, примененный индикатор можно было бы возможно легче определить в самых незначительных количествах. В качестве индикатора чаще всего используют флюоресцин. В предполагаемый источник загрязнения наливают 2-5л 2% раствора этого вещества. Вода водоисточника, связь с которым подозревается, исследуется на зеленое окрашивание каждые 6-12 часов. Помимо флюоресцина могут быть использованы и другие индикаторы - сапрол, хлористый натрий, радиоактивные вещества, B.prodigiosum.

 

26. Природный минеральный состав воды, его влияние на качество питьевой воды и здоровье населения.


Минеральные воды, природного происхождения в зависимости от состава в лечебном назначении делятся на бальнеологические группы:

1)углекислые минеральные воды (в их составе присутствует растворенная углекислота);

2)минеральная вода, не имеющая специфических свойств и компонентов (лечебное свойство обуславливается ионным составом и степенью минерализации);

3)сульфидные минеральные воды (в составе в большем количестве содержится сульфиды);

4)радиоактивные минеральные воды;

5)минеральные воды, содержащие в составе железо, мышьяк и полиметаллы;

6)кремнистые термальные воды;

7)термальные минеральные воды;

8)минеральные воды с большим содержанием органических веществ.


27. Заболевания, обусловленные необычным минеральным составом природных вод. Значение микроэлементов воды в развитии неинфекционных заболеваний водного происхождения. Профилактика эндемических заболеваний.


Ухудшение здоровья в связи с употреблением питьевой воды может быть инфекционной и неинфекционной природы. Перенос с водой возбудителей инфекционных заболеваний может привести к массовым и тяжелым последствиям для здоровья населения. В первую очередь следует считаться с опасностью передачи через воду возбудителей кишечных инфекций: холеры, брюшного тифа, паратифов, дизентерии. Водные эпидемии в прошлые века были крупными бедствиями, уносившими тысячи человеческих жизней.

Серьезную опасность для здоровья населения представляет химический состав воды. В природе вода никогда не встречается в виде химически чистого соединения. Обладая свойствами универсального растворителя, она постоянно несет большое количество различных элементов и соединений, соотношение которых определяется условиями формирования воды, составом водоносных пород.

Вред здоровью жителей связан с особенностями химического состава воды. Химические вещества, содержащиеся в питьевой воде в различных сочетаниях, часто являются «факторами малой интенсивности», способствующими увеличению частоты болезней уже ранее распространенных среди населения.

Снижение сопротивляемости организма к различным заболеваниям в результате общетоксического действия питьевой воды приводит к росту общей заболеваемости, сердечнососудистых, кишечных неинфекционных, эндокринных и других заболеваний.

Различают патологические состояния и заболевания, вызванные повышенным природным содержанием химических элементов в питьевой воде и обусловленные техногенным загрязнением воды химическими веществами. Но одни и те же вещества, содержащиеся в питьевой воде (нитраты, свинец, хром и другие), могут быть вызваны как природными, так и техногенными причинами.

Имеются сведения о том, что высокая минерализация (солевой состав) питьевой воды является фактором, оказывающим определенное влияние на увеличение заболеваемости жителей болезнями нервной системы и органов чувств, а также частоты психических расстройств.

Повышенное содержание хлоридов в воде может способствовать развитию болезней системы кровообращения, новообразований мочеполовых органов, хлоридов и сульфатов - возникновению новообразований пищевода, желудка и других органов пищеварения.

Согласно опубликованным данным, повышенная жесткость (содержание бикарбонатов, сульфатов и хлоридов кальция и магния) питьевой воды может привести к увеличению распространенности среди населения болезней системы кровообращения, органов пищеварения, новообразований пищевода, желудка и других органов пищеварения, а также болезней эндокринной системы, расстройств питания и нарушения обмена веществ. Специалисты считают, что повышенная жесткость питьевой воды, обусловленная присутствием солей, является одной их причин развития мочекаменной болезни (уролитиаза).

Результаты проведенных исследований, свидетельствуют о том, что процент граждан, заболевших хроническими заболеваниями, в том числе заболеваниями: органов пищеварения, системы кровообращения (ишемической болезнью сердца, гипертонической болезнью) и хроническими заболеваниями органов дыхания, выше в группе пациентов, систематически употреблявших для питья сырую воду с повышенным содержанием сухого остатка и общей жесткостью, по сравнению с гражданами, употреблявшими только кипяченую или специально очищенную воду. Кроме того, распространенность заболеваний нервной системы (в первую очередь вегетососудистых дистоний), также оказалась выше в группе школьников, систематически употреблявших для питья сырую воду по сравнению с детьми, употреблявшими воду только кипяченую или очищенную.

Имеются сведения о том, что качество употребляемой питьевой воды оказывает влияние на самочувствие и успеваемость школьников. В результате исследований, установлено, что усталость и понижение работоспособности к середине дня отмечает 50% школьников, употребляющих водопроводную воду и 23% тех, кто пьет очищенную воду. Аналогичные данные были получены и при анализе ответов учеников на вопрос о самооценке здоровья: реже болеют дети, употребляющие очищенную воду (12%), чем те, кто пьет любую воду (60%).

В природных водах в норме содержатся микроэлементы (фтор, йод, молибден, селен и др.) и макроэлементы (натрий, кальций, фосфор и пр.) которые являются жизненно необходимыми. Избыточное или недостаточное поступление их в организм человека вызывает физиологические сдвиги или патологические изменения.

 

28. Источники питьевого водоснабжения и их сравнительная гигиеническая характеристика. Принципы выбора источников хозяйственно-питьевого водоснабжения.

29. Системы водоснабжения и их сравнительная характеристика. Гигиенические требования к устройству и эксплуатации местных источников водоснабжения.

30. Гигиенические требования к качеству питьевой воды. Показатели безопасности воды в эпидемиологическом отношении и безвредности химического состава. Принципы нормирования показателей качества питьевой воды.

31. Гигиенические требования к качеству питьевой воды. Органолептические свойства воды, принципы нормирования.

32. Источники загрязнения питьевой воды вредными химическими веществами и патогенными микроорганизмами. Процессы самоочищения водоемов.

33. Методы и способы улучшения качества питьевой воды. Санитарная охрана водоисточников.

34. Обеззараживание питьевой воды: физические и химические методы.

ВСЕ ПО ВОДЕ!


Дата добавления: 2015-12-16 | Просмотры: 624 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.028 сек.)