АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Синаптическая передача в ЦНС. Свойства синапсов.

Прочитайте:
  1. A-адреномиметики. Фармакологические свойства. Показания к применению. Побочные эффекты.
  2. B-адреноблокаторы. Фармакологические свойства. Показания к применению. Побочные эффекты.
  3. B-адреномиметики. Фармакологические свойства. Показания к применению. Побочные эффекты.
  4. III. Коллигативные свойства растворов
  5. А-адреноблокаторы. Фармакологические свойства. Показания к применению. Побочные эффекты.
  6. Акриловые пластмассы. Состав. Физико-механические свойства. Пластмассы, выпускаемые промышленностью для изготовления зубных протезов.
  7. Антидепрессанты. Фармакологические свойства. Классификация. Побочные эффекты.
  8. Арбовирусные инфекции: биологические свойства и представители
  9. Арбовирусные инфекции: биологические свойства и представители
  10. Безводные эластомерные оттискные материалы. Виды. Составы, свойства и методики приготовления.

Синаптическая передача (также называемая нейропередача) — электрические движения в синапсах вызванные распространением нервных импульсов. Каждая нервная клетка получает медиатор из пресинаптического нейрона или из терминального окончания или из постсинаптического нейрона или дендрида вторичного нейрона и посылает его обратно нескольким нейронам, которые повторяют данный процесс, таким образом, распространяя волну импульсов до тех пор, пока импульс не достигнет определенного органа или специфической группы нейронов.

Нервные импульсы необходимы для распространения сигналов. Эти сигналы посылаются в и исходят из центральной нервной системы через эфферентные и афферентные нейроны для координации гладких, скелетных и сердечных мышц, секреции желез и функционирования органов, важных для долгосрочного выживания многоклеточных позвоночных организмов, таких как млекопитающие.

Нейроны образуют нейронные сети, по которым передаются нервные импульсы. Каждый нейрон образует не менее 15,000 соединений с другими нейронами. Нейроны не соприкасаются друг с другом; они образуют точки соприкосновения, называемые синапсами. Нейрон передают информацию с помощью нервного импульса. Когда импульс нейрона достигает синапса это приводит к выделению медиаторов, которые влияют на другие клетки, приводя к торможению или возбуждению. Следующий нейрон может соединяться с множеством других нейронов, и если возбуждающие процессы превалируют над угнетающими, то будет развит потенциал действия в основании аксона, таким образом передавая информацию к следующему нейрону, приводя к памяти или действию.

Примером распространения с помощью нейронов является сердечное сокращение. Сокращение осуществляется когда сигнал поступает из синоатриального узла с частотой, заставляющей сердце полностью сократиться, выбросив всю кровь и последующему наполнению новой порцией крови. Важно, что импульс посылается из синоатриального узла, так как направление импульса между нейронами заставляет мышцу сокращаться полностью. Если импульс будет поступать из синоатриального узла сердце будет сокращаться неуверенно и не будет выбрасывать всю кровь в систему.

Конвергенция и дивергенция

Синаптическая передача включает как конвергенцию так и дивергенцию информации. Сначала на один нейрон влияют многие другие, приводя к конвергенции информации на входе. Потом нейрон отвечает, сигнал посылается множеству других нейронов, приводя к дивергенции на выходе. Этот нейрон воздействует на многие другие нейроны.[1]

Синаптическая сопередача

Синаптическая сопередача — высвобождение нескольких медиаторов из одного нервного окончания. Синаптическая сопередача реализовывает более сложные эффекты на постсинаптических рецепторах, таким образом реализовывая более сложные взаимодействия между нейронами.

В современной нейробиологии нейроны обычно классифицирцются по их комедиатору, например, стриарные ГАМКергические нейроны используют опиоидные белки или субстанцию P в качестве комедиаторов.

Си́напс[1] (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Структура синапса

Типичный синапс — аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической, образованной булавовидным расширением окончанием аксона передающей клетки и постсинаптической, представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае — участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель — промежуток шириной 10—50 нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной. Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной, в химических синапсах она рельефна и содержит многочисленные рецепторы.

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки, содержащие либо медиатор (вещество-посредник в передаче возбуждения), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Классификации синапсов

В зависимости от механизма передачи нервного импульса различают

химические;

электрические — клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе — 3,5 нм (обычное межклеточное — 20 нм). Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

смешанные синапсы: Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

Наиболее распространены химические синапсы.

Химические синапсы можно классифицировать по их местоположению и принадлежности соответствующим структурам: периферические

нервно-мышечные

нейросекреторные (аксо-вазальные)

рецепторно-нейрональные

центральные

аксо-дендритические — с дендритами, в т. ч.

аксо-шипиковые — с дендритными шипиками, выростами на дендритах;

аксо-соматические — с телами нейронов;

аксо-аксональные — между аксонами;

дендро-дендритические — между дендритами;

В зависимости от медиатора синапсы разделяются на аминергические, содержащие биогенные амины (например, серотонин, дофамин); в том числе адренергические, содержащие адреналин или норадреналин; холинергические, содержащие ацетилхолин; пуринергические, содержащие пурины; пептидергические, содержащие пептиды.

При этом в синапсе не всегда вырабатывается только один медиатор. Обычно основной медиатор выбрасывается вместе с другим, играющим роль модулятора.

По знаку действия:возбуждающие и тормозные.

Если первые способствуют возникновению возбуждения в постсинаптической клетке (в них в результате поступления импульса происходит деполяризация мембраны, которая может вызвать потенциал действия при определённых условиях.), то вторые, напротив, прекращают или предотвращают его появление, препятствуют дальнейшему распространению импульса. Обычно тормозными являются глицинергические (медиатор — глицин) и ГАМК-ергические синапсы (медиатор — гамма-аминомасляная кислота).

Тормозные синапсы бывают двух видов: 1) синапс, в пресинаптических окончаниях которого выделяется медиатор, гиперполяризующий постсинаптическую мембрану и вызывающий возникновение тормозного постсинаптического потенциала; 2) аксо-аксональный синапс, обеспечивающий пресинаптическое торможение. Синапс холинергический (s. cholinergica) — синапс, медиатором в котором является ацетилхолин.

В некоторых синапсах присутствует постсинаптическое уплотнение — электронно-плотная зона, состоящая из белков. По её наличию или отсутствию выделяют синапсы асимметричные и симметричные. Известно, что все глутаматергические синапсы асимметричны, а ГАМКергические — симметричны.

В случаях, когда с постсинаптической мембраной контактирует несколько синаптических расширений, образуются множественные синапсы.

К специальным формам синапсов относятся шипиковые аппараты, в которых с синаптическим расширением контактируют короткие одиночные или множественные выпячивания постсинаптической мембраны дендрита. Шипиковые аппараты значительно увеличивают количество синаптических контактов на нейроне и, следовательно, количество перерабатываемой информации. «Не-шипиковые» синапсы называются «сидячими». Например, сидячими являются все ГАМК-ергические синапсы.

Механизм функционирования химического синапса

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала. Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели — ацетилхолинэстераза. Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии.

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка — время, нужное для передачи нервного импульса. Её длительность составляет около — 0,5 мс.

Так называемый «принцип Дейла» (один нейрон — один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

Общие свойства синапсов определяются особенностями их строения и механизмом проведения возбуждения.

Пластичность синапса. Синапс - одна из наиболее пластичных организаций нервной системы. Одностороннее проведение возбуждения связано с особенностями строения постсинаптической мембраны. Чувствительные к медиатору рецепторы находятся именно в ней, поэтому поступающий медиатор действует только в одном направлении, вызывая деполяризацию и гиперполяризацию постсинаптической мембраны.

Низкая лабильность и высокая утомляемость синапса обусловлены временем распространения предыдущего импульса.

Высокая избирательная чувствительность синапса к химическим веществам обусловлена специфичностью хеморецепторов постсинаптической мембраны.


Дата добавления: 2015-12-15 | Просмотры: 2151 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.011 сек.)