Необходимая численность выборки
Разрабатывая программу выборочного наблюдения, задаются конкретным значением предельной ошибки и уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя формулы сначала (39) и затем (40) в формулу (41) и решая ее относительно численности выборки, получим следующие формулы:
для повторной выборки n = ; (46) для бесповторной выборки n = . (47)
Вариация () значений признака к началу выборочного наблюдения как правило неизвестна, поэтому ее берут приближенно одним из способов:
1) берется из предыдущих выборочных наблюдений;
2) по правилу «трех сигм», согласно которому в размахе вариации укладывается примерно 6 стандартных отклонений (H/ = 6, отсюда = Н2 /36);
3) если приблизительно известна средняя величина изучаемого признака, то = 2 /9;
4) если неизвестна дисперсия доли единиц, обладающих каким-либо значением признака, то используется ее максимально возможная величина = 0,25.
Дата добавления: 2016-06-06 | Просмотры: 577 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
|