Кинетика поступления минеральных веществ
При исследовании кинетики поступления ионов можно разделить транспорт по клеточным компартментам: клеточная оболочка, плазмалемма и т. д. Экспериментально это можно сделать перенося клетки или ткани из немеченного раствора в меченный и изучая кинетику поступления веществ. Движение в клеточной оболочке определяется шириной микрофибриллярного и межмицеллярного пространства, характером и концентрацией фиксированных ионных зарядов.
При изучении кинетики поступления (поглощения) резко выявляются две кинетически разные фазы. Первая – очень быстрая, с периодом полунасыщения (t1/2) около нескольких минут. Другая – медленная, которая наблюдается на протяжении нескольких часов с постоянной скоростью. Быструю первую фазу можно выявить и при изучении кинетики вымывания радиоактивных частиц из ткани. Как показано на рис. 5.11, дополнительные характеристики двух фаз можно получить, используя ингибиторы метаболизма или низкую температуру.
| Рис. 5.11. Поступление растворенных веществ тканями растений:
Фаза 1 – проникновение в КСП; фаза 2 – накопление в клетке;
1 – в обычных условиях; 2 – в присутствии ингибиторов или при низких температурах;
А – количество вещества, накопленное за время t
|
Ингибиторы блокируют только медленную фазу, которая, скорее всего, и контролируется живой цитоплазмой.
В первой фазе поступление растворенных веществ, вероятно, происходит очень быстро независимо от мембранного барьера; это свидетельствует о том, что определенная часть клетки или ткани легко доступна для движения частиц растворенных веществ. Поэтому такое поступление было названо поступлением в кажущееся свободное пространство (КСП).
Можно считать, что транспорт в КСП является пассивным процессом, обусловленным исключительно физическими движущими силами. Объем КСП составляет от 8 до 15 % общего объема ткани.
Для заряженных частиц КСП включает две составляющие, поскольку часть ионов, свободно находящихся в растворе, занимает пространство в клеточных оболочках, а часть связывается фиксированными заряженными местами в клеточной оболочке. В соответствии с этим выделяют водное свободное пространство (ВСП) и донноновское свободное пространство (ДСП):
КСП = ВСП + ДСП
Величина ДСП зависит от природы и плотности фиксированных зарядов в клеточной стенке. Например, в тканях столовой свеклы величина ДСП составляет 2 % от общего объема ткани. КСП ограничено только клеточными оболочками. В последние годы появился термин апопласт, более подходящий, чем КСП. Апопласт – пространство, находящиеся снаружи плазмалеммы, включает пространство клеточных стенок, а для многоклеточного организма, и межклеточные пространства.
При изучении действия низких концентраций катионов в наружной среде на скорость поступления было отмечено, что при увеличении концентрации ионов (на примере K+) в среде поступление ионов в ткань растений достигает насыщения или максимальной скорости при концентрации 0,5–1,0 мМ (рис. 5.12).
Тип поступления в этой области (до 1 мМ) получил название поглощения системой I (низкая константа сродства 0,02–0,03 мМ, т. е. высокое сродство системы к ионам, которые перемещаются через мембрану). Поступление ионов при низких концентрациях в окружающей среде подавляется низкими температурами, динитрофенолом и др. ингибиторами. Это свидетельствует о том, что поступление в диапазоне концентраций, в которых действует система I, связано с активным транспортом (расходом энергии метаболизма).
Но растительные ткани все же не достигают насыщения в диапазоне концентраций свыше 1 мМ. Если значительно повышать концентрацию, то поток будет увеличиваться и, в конце концов, может достичь величины, во много раз превышающей максимальные величины системы I.
| Рис. 5.12. Зависимость поступления ионов в клетки растений
от их концентрации в наружной среде
|
При этих высоких концентрациях скорость поглощения начинает медленно снижаться, наблюдается только некоторая тенденция к насыщению, обычно при концентрациях > 50 мМ. Из анализа полученных данных сделан вывод, что транспорт ионов в диапазоне концентраций, в которых действует система II, не зависит от метаболизма и возможно является пассивным.
Считают, что система I переноса ионов, находится в плазмалемме. Что касается локализации системы II, то по этому вопросу существуют две точки зрения. Эпстейн считает, что система I и II локализованы в плазмалемме, а К. Тори и Г. Летис считают, что система II локализована на тонопласте.
Но скорость поглощения зависит не только от концентрации вещества во внешней среде, но и от времени. Кривую, которая описывает зависимость между внешней концентрацией и скоростью поступления, называют изотермой поглощения, поскольку ее получают при постоянной температуре и разных концентрациях. Анализ полученных результатов показал, что процесс поступления можно описать в рамках уравнения Михаэлиса – Ментен при концентрациях вещества в среде до 1 мМ (см. уравнение 5.13).
Дата добавления: 2014-12-11 | Просмотры: 690 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|