АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Наследственные коллагенопатии
В настоящее время известно 27 различных типов коллагеновых белков. Каждый из них состоит из трех равномерно скрученных полипептидных альфа-цепей, образующих структуру, подобную трехгранному шнуру. Разные типы коллагенов могут быть образованы либо тремя одинаковыми альфа-цепями, либо двумя или тремя различными полипептидами в соотношении 2:1 или 1:1:1 соответственно. Каждая альфа-цепь кодируется собственным геном, поэтому разнообразие коллагеновых генов больше, чем разнообразие соответствующих белков. Биосинтез зрелых коллагенов сопровождается необычно большим числом пост трансляционных модификаций, так что на одной молекуле проколлагеновой полипептидной цепи осуществляется более 120 реакций. В этих превращениях принимают участие более десятка различных ферментов. Все зрелые коллагеновые белки способны к образованию крупных су-прамолекулярных агрегатов. На рис.45 показаны основные этапы биосинтеза коллагена.
Любая альфа-цепь содержит коллагеновой домен, на всем протяжении которого за исключением короткого С-терминального участка каждая третья аминокислота является глицином. Таким образом, молекулярная формула коллагенового домена может быть записана как (Gly-X-Y)n, где X и Y - аминокислоты не-Gly типа. Различные коллагеновые альфа-цепи различаются по количеству и протяженности (Gly-X-Y)-MOTHBOB в коллагеновом домене и по конкретному содержанию аминокислот в X и Y положениях. Присутствие глицина, самой маленькой из аминокислот, в каждом третьем положении коллагеновых полипептидных цепей существенно для их правильного скручивания в тройную спираль, так как глицин при этом занимает ограниченное пространство в центре триплекса. Поэтому любые мутации, приводящие к замене глицина на другую аминокислоту, будут сопровождаться локальными нарушениями структуры тройной спирали и дезорганизацией более крупных агрегатов коллагена. К тяжелым последствиям также приводят мутации, нарушающие структуру С-концевого участка адьфа-цепи, так как образование триплекса по типу «застежки-молнии» начинается именно с этого участка молекулы. Кроме того, именно в этой области локализованы сайты взаимодействия коллагена более чем с 50 другими белками. Патологический процесс оказывается менее тяжелым, если в результате мутации альфа-цепь полностью утрачивает способность участвовать в формировании зрелых коллагеновых молекул. Это мутации, сопровождающиеся преждевременной терминацией трансляции или затрагивающие N-концевые районы альфа-цепи коллагена. При этом в образовании триплексной структуры принимают участие только нормальные полипептиды, мутантные альфа-цепи в нее не входят и вскоре после синтеза подвергаются внутриклеточному протеолизу. В результате снижается скорость синтеза зрелых коллагеновых молекул, но их структура сохраняется нормальной, и они не утрачивают способность к образованию упорядоченных супрамолекулярных агрегатов. Доминантный характер заболеваний, обусловленных нарушением структуры коллагеновых молекул, объясняется тем, что присутствие, наряду с мутантными, нормальных альфа-цепей не предотвращает образования дефектов в фибриллах или других надмолекулярных комплексах коллагена. Заболевания, вызванные нарушением биосинтеза коллагеновых молекул и связанные с присутствием мутаций в генах соответствующих ферментов, наследуются по рецессивному типу.
Коллагены I, II и III типов являются мажорными и составляют более 90% всех коллагенновых белков. Они способны формировать крупные высоко организованные фибриллы, в которых отдельные молекулы коллагена располагаются четырехступенчатыми уступами. Остальные коллагеновые белки относятся к классу нефибриллярных коллагенов, формирующих мелкие фибриллы, либо листовидные мембранные образования.
Коллаген I типа экспрессируется повсеместно, но особенно обильно представлен в костной системе, сухожилиях и коже. Коллаген II типа является мажорным хрящевым коллагеном. Он также составляет основу стекловидного тела. Кроме того, в хрящевой ткани экспрессируются минорные коллагены IX, X, XI и XII типов. Эмбриональный мажорный коллаген III типа является основным компонентом стенок сосудов и кишечника. В базальных мембранах присутствует коллаген IV типа. V коллаген образует каркас внутри фибрилл мажорных коллагенов. Коллаген VI типа участвует во взаимодействии между фибриллами мажорных коллагенов и другими структурными компонентами внеклеточного матрикса. Коллагены VII и XVII типов присутствуют в эпидермальных кератиноцитах и являются компонентами кожных опорных фибрилл. Коллагены VIII и XVIII типов найдены в эндотелии сосудов и роговице, они участвуют в регуляции неоваскуляризации и образовании мембраны Десцемета. Остальные коллагены ассоциируются с мажорными коллагенами I и II типов, способствуя их взаимодействию с другими белками внеклеточного матрикса. Очевидно, что структурные дефекты коллагенов могут сопровождаться тяжелыми повреждениями соединительной ткани. В настоящее время мутации, ассоциированные с различными нозологическими формами наследственных коллагенопатий, найдены в 25 коллагеновых генах, участвующих в синтезе 13 различных типов коллагенов. Клинические проявления этих заболеваний хорошо коррелируют с характером экспрессии различных типов коллагенов и с исполняемыми ими функциями.
Дата добавления: 2014-11-24 | Просмотры: 1123 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|