АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Пигменты листа. Условия образования и химико-физические свойства хлорофилла. Каротиноиды и фикобилины

Прочитайте:
  1. I. Врожденные неопластические образования
  2. I. Нарушение образования импульса.
  3. II. Неблагоприятные условия внешней среды.
  4. II. Новообразования
  5. II. Условия выполнения законов Менделя
  6. III. Злокачественные новообразования
  7. А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами
  8. Абразивные материалы и инструменты для препарирования зубов. Свойства, применение.
  9. Адгезивные системы. Классификация. Состав. Свойства. Методика работы. Современные взгляды на протравливание. Световая аппаратура для полимеризации, правила работы.
  10. Аденовирусы, морфология, культуральные, биологические свойства, серологическая классификация. Механизмы патогенеза, лабораторная диагностика аденовирусных инфекций.

 

Хлорофиллы. У всех высших растений, водорослей и цианобактерий содержится хлорофилл a, хлорофилл b имеется у высших растений и зеленых водорослей. Хлорофилл с, лишенный фитола, содержится в бурых и диатомовых водорослях, хлорофилл d – в красных водорослях. Фотосинтезирующие зеленые бактерии имеют бактериохлорофиллы c и d, пурпурные бактерии - бактериохлорофиллы a и b.

У хлорофилла а четыре пиррольных кольца соединены между собой метиновыми мостиками (=СН-), образуя порфириновое кольцо. Кроме того, атомы азота пиррольных колец связаны с атомом магния. С порфириновым ядром соединено циклопентановое кольцо, образованное остатком кетопропионовой кислоты и содержащее активные карбонильную (С=О) и метилированную карбоксильную (О=С-О-СН3) группы. Структура, состоящая из порфиринового ядра и циклопентанового кольца, называется форбином. Боковая цепь, состоящая из пропионовой кислоты и непредельного спирта фитола, связана с атомом углерода IV пиррольного кольца (рис. 5.1). Хлорофилл, лишенный фитола, называется хлорофиллидом. Если атом магния замещен протоном, то такое соединение носит название феофитина. Активность хлорофиллов, также как и других пигментов, обусловлена наличием большого количества двойных связей с делокализованными электронами.

Хлорофиллы хорошо растворимы в органических растворителях (этиловом эфире, бензоле, хлороформе, ацетоне, этиловом спирте) и нерастворимы в воде. Хлорофиллы имеют максимумы поглощения света в красной и синей частях спектра. Растворы хлорофиллов обладают флуоресценцией и фосфоресценцией.

Каротиноиды. Каротиноиды – жирорастворимые пигменты, присутствующие в хлоропластах всех растений. Они входят в состав хромопластов в незеленых частях растений, например, корнеплодов моркови. К каротиноидам относят 3 группы соединений: 1) оранжевые или красные каротины, 2) желтые ксантофиллы, 3) каротиноидные кислоты. Каротины и ксантофиллы состоят из 8 остатков изопрена, которые образуют цепь конъюгированных двойных связей (рис. 5.2). Основные каротиноиды - b-каротин, лютеин, виолаксантин и неоксантин.

Каротины и ксантофиллы растворимы в хлороформе, бензоле, сероуглероде, ацетоне. Каротины хорошо растворяются в эфирах, но плохо в спиртах, а ксантофиллы наоборот. Каротиноиды имеют максимумы поглощения в фиолетово-синей и синей частях спектра света. Они не способны к флуоресценции.

Главные функции каротиноидов: поглощение света в качестве дополнительных пигментов, защита молекул хлорофиллов от необратимого фотоокисления, тушение активных радикалов, участие в фототропизме, так как способствуют определению направления роста побега.

Фикобилины. Сине-зеленые и красные водоросли помимо хлорофилла а и каротиноидов содержат пигменты фикобилины. Их молекула состоит из 4 последовательных пиррольных колец (рис. 5.3). Фикобилины являются хромофорными группами глобулиновых белков фикобилипротеинов. Они делятся на 3 группы: 1) фикоэритрины – белки красного цвета, 2) фикоцианины – сине-голубые белки и 3) аллофикоцианины – синие белки. Все они обладают флуоресценцией и растворимы в воде.

Фикобилины имеют максимумы поглощения в оранжевой, желтой и зеленой частях спектра света. Это позволяет водорослям полнее использовать свет, проникающий в воду. Вода обладает светопоглощающей способностью. На глубине около 30 м полностью исчезают красные лучи, около 180 м – желтые, 320 м – зеленые, а на глубину более 500 м не проникают синие и фиолетовые лучи. Фикобилины – это дополнительные пигменты, участвующие в светособирающем комплексе. Около 90 % энергии света, поглощенного фикобилинами, передается на хлорофилл а.

У растений имеется фикобилин фитохром. Он не участвует в фотосинтезе, но является фоторецептором красного и дальнего красного света и выполняет регуляторные функции в клетках растений.

Исследования влияния света на накопление хлорофилла в этиолированных проростках позволили установить, что первым в процессе зеленения появляется хлорофилл а. Спектрографический анализ показывает, что процесс образования хлорофилла идет очень быстро. Так, уже через 1 мин после начала освещения выделенный из этиолированных проростков пигмент имеет спектр поглощения, совпадающий со спектром поглощения хлорофилла а. По мнению А.А. Шлыка, хлорофилл b образуется из хлорофилла а.

При исследовании влияния качества света на образование хлорофилла в большинстве случаев проявилась положительная роль красного света. Большое значение имеет интенсивность освещения. Существование нижнего предела освещенности для образования хлорофилла было показано в опытах В.Н. Любименко для проростков ячменя и овса. Оказалось, что освещение электрической лампой мощностью 10 Вт на расстоянии 400 см было пределом, ниже которого образование хлорофилла прекращалось. Существует и верхний предел освещенности, выше которого образование хлорофилла тормозится. Проростки, выросшие в отсутствие света, называют этиолированными. Такие проростки характеризуются измененной формой (вытянутые стебли, неразвившиеся листья) и слабой желтой окраской (хлорофилла в них нет). Как было ска­зано выше, образование хлорофилла на заключительных этапах требует света.

Еще со времен Ю. Сакса (1864) известно, что в некоторых случаях хлорофилл образуется и в отсутствие света. Способность образовывать хлорофилл в темноте характерна для организмов, стоящих на нижней ступени эволюционного процесса. Так, при благоприятных условиях питания некоторые бактерии могут синтезировать в темноте бактериохлорофилл. Цианобактерии при доста­точном снабжении органическим веществом растут и образуют пигменты в темноте. Способность к образованию хлорофилла в темноте обнаружена и у таких высокоорганизованных водорослей, как харовые. Лиственные и печеночные мхи сохраняют способность образовывать хлорофилл в темноте. Почти у всех видов хвойных при прорастании семян в темноте семядоли зеленеют. Более развита эта способность у теневыносливых пород хвойных деревьев. По мере роста проростков в темноте образовавшийся хлорофилл разрушается, и на 35—40-й день проростки в отсутствие света погибают. Интересно заметить, что проростки хвойных, выращенные из изолированных зародышей в темноте, хлорофилла не образуют. Однако достаточно присутствия небольшого кусочка нераздробленного эндосперма, чтобы проростки начинали зеленеть. Зеленение происходит даже в том случае, если зародыш соприкасается с эндоспермом другого вида хвойных деревьев. При этом наблюдается прямая корреляция между величиной окислительно-восстановительного потенциала эндосперма и способностью проростков зеленеть в темноте.

Можно сделать заключение, что в эволюционном плане хлорофилл первоначально образовался как побочный продукт темнового обмена. Однако в дальнейшем на свету растения, обладающие хлорофиллом, получили большее преимущество благодаря возможности использовать энергию солнечного света, и эта особенность была закреплена естественным отбором. Образование хлорофилла зависит от температуры. Оптимальная температура для накопления хлорофилла 26—30°С. От температуры зависит лишь образование предшественников хлорофилла (темновая фаза). При наличии уже образовавшихся предшественников хлорофилла процесс зеленения (световая фаза) идет с одинаковой скоростью независимо от температуры. На скорость образования хлорофилла оказывает влияние содержание воды. Сильное обезвоживание проростков приводит к полному прекращению образования хлорофилла. Особенно чувствительно к обезвоживанию образование протохлорофиллида.

Еще В.И. Палладии обратил внимание на необходимость углеводов для протекания процесса зеленения. Именно с этим связано то, что зеленение этиолированных проростков на свету зависит от их возраста. После 7—9-дневного возраста способность к образованию хлорофилла у таких проростков резко падает. При опрыскивании сахарозой проростки снова начинают интенсивно зеленеть. Важнейшее значение для образования хлорофилла имеют условия минерального питания. Прежде всего необходимо достаточное количество железа. При недостатке железа листья даже взрослых растений теряют окраску. Это явление названо хлорозом. Железо — важный катализатор образования хлорофилла. Оно необходимо на этапе синтеза 5-аминолевулиновой кислоты, а также синтеза протопорфирина. Большое значение для обеспечения синтеза хлорофилла имеет нормальное снабжение растений азотом и магнием, так как оба эти элемента входят в состав хлорофилла. При недостатке меди хлорофилл легко разрушается. Это, по-видимому, связано с тем, что медь способствует образованию устойчивых комплексов между хлорофиллом и соответствующими белками. Исследование процесса накопления хлорофилла у растений в течение вегетационного периода показало, что максимальное содержание хлорофилла приурочено к началу цветения. Есть даже мнение, что повышение образования хлорофилла может быть использовано как индикатор, указывающий на готовность растений к цветению. Синтез хлорофилла зависит от деятельности корневой системы. Так, при прививках содержание хлорофилла в листьях привоя зависит от свойств корневой системы подвоя. Возможно, что влияние корневой системы связано с тем, что там образуются гормоны (цитокинины). У двудомных растений большим содержанием хлорофилла характеризуются листья женских особей.


Дата добавления: 2015-02-02 | Просмотры: 2297 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)