Нефть и нефтепродукты
С химической точки зрения сырая нефть представляет собой сложную смесь нескольких тысяч жидких углеводородов (80–90%) с примесью других органических соединений (нафтеновые кислоты, асфальтены, смолы, меркаптаны и др.), а также воды (до 10%), растворенных газов (до 4%), минеральных солей и микроэлементов. Установлено, что «типичная» нефть содержит в среднем 57% алифатических углеводородов, 29% ароматических углеводородов, 14% асфальтенов и других соединений.
Основными загрязняющими веществами, образующимися в процессе добычи и переработки нефти, являются углеводороды (48%) и оксид углерода (44%). Кроме этого, нефть содержит около 30 металлов, среди которых максимальные концентрации (порядка долей %) характерны для ванадия и никеля.
В отличие от многих антропогенных воздействий, нефтяное загрязнение оказывает комплексное воздействие на окружающую среду и вызывает ее быструю отрицательную реакцию. Так, хронические разливы нефти, нефтепродуктов, соленых пластовых вод, выносимых эксплута-ционными скважинами вместе с нефтью и газом, приводят к уменьшению продуктивности земель и деградации ландшафтов. Воздействие нефтепроводов на почвенный покров проявляется в основном в механическом нарушении почвенного покрова при строительстве и ремонтных работах трубопроводов и химическом загрязнении почв при авариях.
Для оценки нефти как загрязняющего вещества природной среды предложено использовать следующие признаки: содержание легких фракций, содержание парафинов, содержание серы.
Летучие ароматические углеводороды (легкие фракции нефти) – толуол, ксилол, бензол, нафталин и др., обладающие повышенной токсичностью для живых организмов, легко разрушаются и удаляются из почвы. Поэтому период острого токсического действия сравнительно небольшой. Парафины не оказывают сильного токсического действия на почвенную биоту или планктон и бентос морей и океанов, но благодаря высокой температуре отвердения существенно влияют на физические свойства почвы, изменяют ее структуру. Содержание серы свидетельствует о степени опасности сероводородного загрязнения почв и поверхностных вод.
Легкая фракция нефти (tкип < 2000 С), куда входят наиболее простые по строению низкомолекулярные метановые (алканы), нафтеновые (циклопарафины) и ароматические углеводороды – наиболее подвижная часть нефти.
Большую часть легкой фракции составляют метановые углеводороды с большим числом углеродных атомов от 5 до 11. Нормальные (не-разветвленные) алканы составляют в этой фракции 50–70%. Метановые углеводороды легкой фракции, находясь в почвах, водной и воздушной средах, оказывают наркотическое и токсическое действие на живые организмы. Особенно быстро действуют нормальные алканы с короткой углеродной цепью. Эти углеводороды лучше растворимы в воде, легко проникают в клетки организмов через мембраны, дезорганизуют цито-плазменные мембраны организма. Нормальные алканы, содержащие в цепочке менее 9 атомов углерода, большинством организмов не ассимилируются, хотя могут быть окислены. Их токсичность ослабляется в присутствии нетоксичного углеводорода, который уменьшает общую растворимость алканов.
Легкая фракция, мигрируя по почвенному профилю и водоносным горизонтам, расширяет, иногда значительно, ореол первоначального загрязнения. Значительная часть легкой фракции нефти разлагается и улетучивается еще на поверхности почвы или смывается водными потоками. Путем испарения из почвы удаляется от 20 до 40% легкой фракции.
Метановые углеводороды во фракции, кипящей выше 20000С (пристан С19Н40, фитан С20Н42 и др.) практически нерастворимы в воде. Их токсичность выражена гораздо слабее, чем у низкомолекулярных структур.
Содержание твердых метановых углеводородов (парафина) в нефти колеблется от очень малых количеств до 15–20%. Эта характеристика очень важна при изучении нефтяных разливов на почвах. Твердый парафин не токсичен для живых организмов, но вследствие высоких температур застывания (+180С и выше) и растворимости в нефти (+400С) в условиях земной поверхности он переходит в твердое состояние, лишая нефть подвижности.
Твердый парафин трудно разрушается, с трудом окисляется на воздухе. Он надолго может «запечатать» все поры почвенного покрова, лишив почву свободного влаго- и газообмена. Это, в свою очередь, приводит к полной деградации биоценоза.
К циклическим углеводородам в составе нефти относятся нафтеновые (циклоалканы) и ароматические (арены). Общее содержание нафтеновых углеводородов в нефти изменяется в среднем от 35 до 60%. Циклические углеводороды с насыщенными связями окисляются очень трудно, что связано с их малой растворимостью и отсутствием функциональных групп. Биодеградация полярных алканов идет легче, окисление происходит главным образом по месту присоединения боковой цепи или месту соединения циклов.
Ароматические углеводороды – наиболее токсичные компоненты нефти. При концентрации 1% в воде они вызывают гибель всех водных растений. С увеличением содержания ароматических соединений в неф-
ти возрастает ее гербицидная активность. Содержание ароматических углеводородов в нефти изменяется от 5 до 55%.
Бензол и его гомологи оказывают более быстрое токсическое действие на организм, чем полициклические ароматические углеводороды (ПАУ). Последние действуют медленнее, но более длительное время, являясь хроническими токсикантами.
Ароматические углеводороды трудно поддаются разрушению, обычно медленно окисляясь микроорганизмами.
Смолы и асфальтены относятся к высокомолекулярным компонентам нефти, определяя во многом ее физические свойства и химическую активность. Структурный состав смол и асфальтенов составляют высоко конденсированные полициклические ароматические структуры, состоящие из десятков колец, соединенных между собой гетероатомными структурами, содержащими серу, кислород, азот. Смолы – вязкие, мазе-подобные вещества с относительной молекулярной массой 500–1200, асфальтены – твердые вещества, нерастворимые в низкомолекулярных углеводородах с массой 1200–3000. В них содержится основная часть микроэлементов нефти.
При нефтяном загрязнении почвенного покрова негативное действие смол и асфальтенов заключается не столько в их химической токсичности, сколько в изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается поровое пространство почвы. Смолисто-асфальтеновые компоненты гидрофобны. Обволакивая корни растений, они снижают поступление к ним влаги, в результате чего растения засыхают.
При поступлении за земную поверхность нефть оказывается в качественно новых условиях существования: из анаэробной обстановки с медленными темпами геохимических процессов она поступает в хорошо аэрируемую среду, в которой, помимо абиотических факторов, большую роль играют биогеохимические факторы и прежде всего деятельность микроорганизмов.
В почвах нефть и нефтепродукты могут находиться в следующих формах:
– в пористой среде – в парообразном и жидком легкоподвижном состоянии, в свободной или растворенной водной или водно-эмульсионной фазе;
– в пористой среде и трещинах – в свободном неподвижном состоянии, играя роль вязкого или твердого цемента между частицами и агрегатами почвы;
– в связанном состоянии на частицах почвы, в том числе на гумусовой составляющей почвы;
– в поверхностном слое почвы, в том числе в виде плотной орга-номинеральной массы.
Будучи смесью различных по строению и свойствам компонентов, нефть разлагается очень медленно – процессы деструкции одних соединений ингибируются другими, при трансформации отдельных компонентов происходит образование трудноокисляемых форм и т.д.
Скорость деградации нефти, активность самоочищения почв или устойчивое сохранение в них загрязняющих веществ в разных ландшафтах заметно различаются.
Примечательно, что при авариях нефтепроводов в зимнее время воздействие нефти на окружающую среду имеет свою специфику: растительности, находящейся в состоянии покоя и мерзлым почвам будет нанесен меньший вред, чем летом, несмотря на то, что зимой общая эффективность самоочищения от пленок сырой нефти в 3 раза меньше, чем в условиях положительных температур. Здесь основную роль играет испарение со снежной и ледяной поверхности – 50–80% и фотоокисление – 15–35%. Пятна нефти нарушают термическое состояние снега и льда, тем самым усиливая их таяние. Благодаря этому образуются проталины, препятствующие распространению нефти. Прекращение растекания нефти и ее локализация будут происходить также за счет увеличения ее вязкости при низких температурах. Лед способен захватывать нефть с поверхности воды в количестве до 25% собственной массы.
Антропогенному загрязнению нефтью и нефтепродуктами подвержены в той или иной степени все категории природных вод: континентальные поверхностные и подземные, воды морей и океанов.
С первых секунд контакта с морской средой сырая нефть перестает существовать как исходный субстрат и подвергается сложным динамическим процессам переноса, рассеяния и трансформации. Особенно быстро происходит испарение легких нефтяных фракций: от 30 до 60% нефти исчезает с поверхности моря уже в первые часы и сутки после разлива. Одновременно развиваются процессы растекания и дрейфа нефтяной пленки на поверхности моря (в основном под действием ветра и течений) с растворением и эмульгированием нефти в морской воде в результате ветрового перемешивания верхнего слоя. Растворимость нефтяных углеводородов обычно экспоненциально снижается с увеличением их молекулярного веса. Поэтому ароматические соединения (особенно такие, как бензол, толуол и др.) быстро переходят в водную фазу в отличие от многих алифатических углеводородов.
Эмульгированная нефть накапливается в морских организмах (особенно в моллюсках за счет их фильтрационного питания), а также используется в качестве пищевого субстрата для нефтеокисляющих бактерий, которые способны быстро разлагать диспергированные в толще воды углеводороды. В результате этих многофакторных и взаимосвязанных процессов разлитая в море нефть распределяется на агрегатные фракции, включая поверхностные пленки, растворенные и взвешенные формы,
эмульсии, осажденные на дно твердые и вязкие компоненты и аккумулированные в организмах соединения. Доминирующими миграционными формами в первые часы и сутки являются нефтяные пленки и эмульсии.
Нефтяные разливы относятся к числу наиболее сложных и динамичных явлений распределения примесей в море. Каждый такой разлив по-своему уникален и неповторим из-за практически бесконечного набора конкретных природных и антропогенных факторов в данном месте и в данное время. Особенно сложная картина складывается в ледовых условиях, когда скорость испарения и распада углеводородов резко снижается, а нефть аккумулируется под ледовым покрытием, в его прогалинах и пустотах, сохраняясь здесь до начала таяния льда.
С экологических позиций важно различать два основных типа нефтяных разливов. Один из них включает разливы, которые начинаются и завершаются в открытом море без соприкосновения с береговой линией. Их последствия, как правило, носят временный, локальный и быстро обратимый характер в форме острого стресса. Другой и наиболее опасный тип разливов предполагает вынос нефтяного поля на берег, аккумуляцию нефти на побережье и длительные экологические нарушения в прибрежной и литоральной зоне, что можно трактовать как хронический стресс. Чаще всего оба эти сценария развиваются одновременно, и это особенно вероятно для ситуаций, при которых аварийный разлив происходит в непосредственной близости от берега.
Как следует из известной статистики, большинство аварийных ситуаций и нефтяных разливов приходится на прибрежную зону. Так, например, наибольший ущерб побережью от разлива нефти, согласно «Книге рекордов Гиннеса», был нанесен 24 марта 1989 г. в результате аварийного выброса в заливе Принц-Уильямс (Prince Williams) у побережья Аляски. Танкер «Вальдес», принадлежащий компании «Экссон Мобил» (Exxon Mobil), натолкнулся на риф и получил пробоину. В результате в море вылилось 45 000 т нефти. Подверглось загрязнению около 2 400 км побережья Аляски. Погибло около 645 млн птиц, а также морские выдры, тюлени, рыбы. Пострадали люди – не были приняты все меры, чтобы обезопасить принимавших участие в ликвидации последствий катастрофы от воздействия паров сырой нефти и других химических веществ, особенно токсичного сероводородного газа.
В первый год после катастрофы сбор урожая у местного населения сократился до 77% (по сравнению с предыдущим годом). Около 12% от общего объема разлитой нефти осталось в отложениях на дне, 3% – на берегу. В теплые дни остатки нефти поднимаются на поверхность и продолжают наносить вред экосистеме.
В дополнение к детально изученному и описанному в литературе катастрофическому эпизоду с аварией танкера «Вальдес» можно доба-
вить ряд аналогичных событий в 90-е годы, включая разливы у берегов США, Великобритании, Японии и других стран.
Вероятность выноса нефти на берег в таких случаях зависит от характера разлива (объем, расстояние от берега и пр.) и конкретных гидрометеорологических условий в данном месте и в данное время, в первую очередь от силы, направления ветра и течений. По данным мировой статистики при больших разливах существует вероятность (в пределах 1–13%) обратного смыва вынесенной на берег нефти в сублиторальную зону, где уровни нефтяного загрязнения донных осадков обычно на порядок ниже по сравнению с береговыми и литоральными отложениями. Общая схема развития биологических эффектов и последствий нефтяного загрязнения при остром и хроническом воздействии показана на рис. 7.
Рис. 7. Схема основных стадий, биологических эффектов и последствий нефтяных разливов в море (По: С.А. Патин, 2001)
В зависимости от продолжительности и масштаба загрязнения может наблюдаться широкий диапазон поражающих эффектов – от поведенческих аномалий и гибели организмов на начальных стадиях разлива в пелагиали (табл. 9) до структурных и функциональных перестроек в популяциях и сообществах при хроническом воздействии в литорали (табл. 10).
Таблица 9
Дата добавления: 2015-02-05 | Просмотры: 1074 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 |
|