Загрязняющими биосферу веществами могут быть соединения практически всех элементов периодической системы Д.И. Менделеева.
При изучении загрязнения минеральными веществами обычно исследуют отдельные химические элементы, а не их соединения. При этом в отношении микроэлементов с начала 60-х годов ХХ в. очень широко используется термин «тяжелые металлы», или «токсичные металлы», в англоязычной литературе эти металлы называются также «следовыми» (trace metals). Для них характерны высокая токсичность, мутагенный и канцерогенный эффекты.
Термин «тяжелые металлы» принято использовать, когда речь идет об опасных уровнях концентрации металлов с атомной массой более 40.
Термин «микроэлемент» строгого понятия не имеет. Под термином «микроэлементы» понимают все химические элементы, содержание которых в живых организмах и природной среде не превышает 0,01%.
Живые организмы эволюционировали в геохимической среде, их состав формировался и приспосабливался к химическому составу окружающей среды. В связи с этим В.В. Ковальский отмечает, что следует исключить выражение «токсический элемент» (в том числе и «токсичный металл»), а указывать дозу и форму соединения, в которых проявляется токсичность элемента. Любой из микроэлементов при определенном уровне будет проявлять токсичность по отношению к живым организмам.
По степени опасности химические элементы подразделяются на три класса (ГОСТ 17.4.1.02-83):
1. As, Cd, Hg, Se, Pb, Zn, F.
2. B, Co, Ni, Mo, Cu, Sb, Cr.
3. Ba, V, W, Mn, Sr.
Все виды источников загрязнения (рассеиваемые пыли, твердые отходы, стоки) содержат широкую группу загрязняющих веществ полиэлементного состава. Сочетание химических элементов характеризует специфические индивидуальные особенности источников загрязнения.
Загрязнение окружающей среды происходит в результате миграции загрязняющих веществ, генерируемых источниками загрязнения.
Геохимическая миграция – неразрывный комплекс процессов, приводящих к перераспределению химических элементов в природных телах.
Основной геохимической мерой качества окружающей среды является содержание химических элементов: массовая доля химического элемента (мкг/г, мг/кг, г/т или %) либо объемная концентрация – масса химического элемента в единице объема (мкг/л, мг/л, г/м3).
Каждая миграционная природная система является одновременно транспортирующей и вмещающей средой. В результате геохимической миграции может происходить как рассеяние химических элементов, так и их концентрирование. Процесс рассеяния химических элементов обусловливается их разбавлением или осаждением из транспортирующих потоков. Процесс концентрации происходит в случаях, когда в силу тех или иных физических или химических причин скорость транспортирующего потока в целом или скорость перемещения каких-либо составляющих частиц потока резко уменьшается. Такие участки являются геохимическими барьерами. Вся система от источника поставки элементов до геохимического барьера может быть названа миграционным потоком или цепью распространения загрязняющего вещества.
Природные среды, накапливающие загрязняющие вещества (почвы, растительный покров, снеговой покров, донные отложения), являются депонирующими. Перемещение происходит в транспортирующих средах в вводно-миграционных и воздушно-миграционных потоках, а также путем биологического поглощения элементов растительностью и далее по цепям питания живых организмов. Транспортирующие среды для живых организмов являются главными жизнеобеспечивающими природными средами. Распространение химических элементов в антропогенезе может происходить и техническими средствами (автомобильные и железнодорожные перевозки, авиатранспорт и т.д.).
В процессе миграции происходит распределение химических элементов между природными телами.
Интенсивность миграции определяется скоростью обмена, перераспределения химических элементов между компонентами природной среды. Она зависит от физических, физико-химических и биологических свойств природных систем. В конечном счете интенсивность миграции зависит от ландшафтно-геохимических условий, т.е. от специфики сочетания гидрометеорологических, литолого-геохимических и почвенно-ботанических характеристик конкретной территории. Численно интенсивность миграции может быть выражена в виде какого-либо индекса или коэффициента, т.е. относительного показателя, сопоставляющего содержание химических элементов или их объемную концентрацию в фиксированном наблюдении, массе или моменте, по отношению к такому же состоянию природного объекта, принимаемого за
базовый (исходное состояние – до начала геохимического преобразования). Применительно к прикладным геохимическим исследованиям в качестве базового чаще всего принимается фоновое содержание. Фоновое содержание – среднее содержание химических элементов в природных телах по данным изучения их естественной вариации (статистических параметров распределения). Геохимический фон – понятие местное, локальное – средняя величина природной вариации содержаний химических элементов. Коэффициенты концентрации, подсчитанные по отношению к геохимическому фону, называются коэффициентами аномальности (контрастности). Коэффициенты концентрации, подсчитанные по отношению к среднему содержанию химического элемента в литосфере (кларку), в какой-либо геохимической системе (почве, горной породе, растительности и т.д.) или ее таксономической части (тип почвы, тип горной породы и т.д.), называются кларками концентрации.
В результате миграции химических элементов по природным транспортным каналам в окружающей среде образуются геохимические аномалии.
Геохимическая аномалия – участок территории, в пределах которого хотя бы в одном из слагающих его природных тел статистические параметры распределения химических элементов достоверно отличаются от геохимического фона.
Появление геохимических аномалий всегда связано с теми или иными природными и неприродными источниками воздействия, не являющимися обязательным компонентом данного типа геологической структуры или ландшафта. В случае антропогенных источников воздействия образуются антропогенные геохимические аномалии.
Техногенные геохимические аномалии и зоны загрязнения – понятия, широко используемые в природоохранной литературе, не являются полными синонимами. Под зоной загрязнения обычно подразумевается часть геохимической аномалии, в пределах которой загрязняющие вещества достигают концентрации, оказывающей неблагоприятное влияние на живые организмы.
Химические элементы в воздухе и воде мигрируют в виде двух основных групп форм: растворенной и взвешенной.
В водных потоках многие химические элементы мигрируют преимущественно во взвешенной форме. Поэтому при оценке загрязнения водных систем большое значение приобретает мутность воды.
Общая концентрация химических элементов в растворенной форме в условиях загрязнения определяется прежде всего степенью, а также взаимодействием в системе «вода – биота – твердое вещество».
Химические элементы, связанные со взвешенным веществом, могут присутствовать в виде геохимически подвижных форм (т.е. они могут
относительно легко трансформироваться при изменении условий среды) – сорбированные, связанные с органическим веществом, гидрокси-ды железа и марганца, карбонаты; и в виде неподвижных форм – сульфиды, силикаты, входящие в состав решеток неразложившихся обломочных и глинистых минералов (кристаллическая форма).
В атмосферном воздухе элементы могут находиться в аэрозольной фазе (взвешенная в воздухе, дисперсная) и парогазовой фазе.
На биосферных заповедниках, т.е. в эталонных фоновых условиях, большинство тяжелых металлов (Cd, Co, Cr, Cu, Zn, Pb, и Hg), а также Se, As, Br, Sb находятся в атмосфере, главным образом в парогазовой форме.
В атмосферном воздухе жилых территорий крупного промышленного города роль взвесей в составе атмосферы для большинства элементов возрастает до 70–90%. Однако для ряда элементов парогазовая фаза, или, вернее, не улавливаемая фильтром субмикронная фракция, составляет значительную часть содержания (As – 66%, Sb – 67%, Hg – 60%).
При анализе особенностей образования техногенной аномалии за счет выпадений из атмосферы также очень важны представления о формах нахождения химических элементов и прежде всего о соотношении растворенных и взвешенных форм. Практически для всех исследованных химических элементов на относительно удаленных и сравнительно чистых территориях в выпадениях из атмосферы преобладают растворимые формы. Вблизи источников выбросов одновременно с увеличением общей массы выпадающей пыли и степени концентрации в ней элементов резко уменьшается доля растворимых форм (кроме Cd).
В ходе исследований выяснилось, что выпадениями фиксируется всего лишь 20–30% массы выбросов. Остальная часть выброса рассеивается, поступая в региональные и глобальные миграционные циклы, создавая «фоновое» загрязнение.
Центр наиболее высоких выпадений приурочен к источнику выброса.
Влияние процессов глобального переноса антропогенных загрязняющих веществ привело к тому, что сейчас, в сущности, не удается собрать надежные данные о природном фоновом состоянии воздуха и выпадений, определяемом космогенным, вулканогенным и литогенным поступлением химических элементов.
Морфология потоков рассеяния в урбанизированных зонах и особенности распределения химических элементов и их ассоциаций определяется, прежде всего, закономерностями пространственного распределения выпадений из атмосферы на земную поверхность.
Имеется рад физико-математических моделей, описывающих процессы выпадения загрязняющих веществ. Основными параметрами моделей распространения являются мощность и высота источника, высота
слоя вымывания, скорость и направление воздушных потоков, гравитационные характеристики примесей, интенсивность осадков.
Элементы, поступающие с выпадениями из атмосферы, концентрируются в самой верхней части почв (0–20 см и 0–40 см). В результате техногенных выпадений и аккумулирования почвы начинают трансформировать соединения тяжелых металлов, и в почвенных горизонтах возникают новые металлорганические соединения, которых не было до техногенного загрязнения.
Локализация и интенсивность поступления техногенных потоков химических элементов обусловливает формирование техногенных геохимических аномалий и биогеохимических провинций с различной степенью экологической напряженности.
Под действием техногенных выбросов происходит деградация плодородия почв. В поверхностных горизонтах почв в районах промышленных узлов содержание микроэлементов, в том числе и тяжелых металлов, увеличивается в десятки и сотни раз относительно фоновых концентраций, и загрязненные почвы сами становятся источником загрязнения окружающей среды. В результате на таких промышленных территориях образуются техногенные биогеохимические микропровинции с аномально высоким содержанием микроэлементов, и в конечном счете сильно изменяются состав и свойства почвы вплоть до исчезновения на их поверхности природной растительности. На таких почвах культурные растения настолько меняют свой химический состав, что становятся непригодными для употребления в пищу человека и в качестве фуража для животных.
Химическое загрязнение почв тяжелыми металлами – наиболее опасный вид деградации почвенного покрова, поскольку самоочищающая способность почв от тяжелых металлов минимальна, почвы прочно аккумулируют их, чему способствует органическое вещество. Тем самым почва становится одним из важнейших геохимических барьеров для большинства токсикантов на пути их миграции из атмосферы в грунтовые и поверхностные воды.
Так как на большей части урбанизированных территорий антропогенное воздействие преобладает над естественными факторами почвообразования, то в городах мы имеем специфические типы почв, характерной особенностью которых является высокий уровень загрязнения. При максимальном проявлении процессов химического загрязнения почва полностью утрачивает способность к продуктивности и биологическому самоочищению, что ведет к нарушению ее экологических функций.
Миграционные процессы химических в почвах обусловлены рядом факторов, важнейшими из которых являются окислительно-восстановительные и кислотно-основные свойства почв, содержание в
них органического вещества, гранулометрический состав, а также водно-тепловой режим и геохимический фон региона.
Захват химических элементов растительностью знаменует их вовлечение в особую форму движения – биологическую миграцию. Учитывая неодинаковое физиологическое значение разных элементов, можно предположить, что интенсивность вовлечения разных элементов в этот процесс неодинакова. Б.Б. Полынов предложил характеризовать интенсивность биологического поглощения химического элемента частным от деления его содержания в золе и горных породах. Этот параметр А.И. Перельман (1975) назвал коэффициентом биологического поглощения Кб. Так, например, расчеты показывают, что молибден в десятки раз интенсивнее аккумулируется растительностью, чем титан.
Все элементы можно разделить по интенсивности биологического поглощения на две группы. К первой относятся те, концентрация которых в золе больше, чем в земной коре. Особенно активно захватываются бор, бром, йод, цинк и серебро (Кб > 10). Ко второй группе относятся элементы с низкой интенсивностью поглощения, имеющие Кб < 1. Некоторые из них присутствуют в земной коре преимущественно в формах, трудно доступных для растений (галлий, цирконий, титан, иттрий, лантан), другие токсичны, поэтому и поглощаются ограниченно (фтор, уран).
Интенсивность биологического поглощения химических элементов не зависит от их содержания в земной коре. Циркония в гранитном слое континентов несколько больше, чем цинка, но интенсивность биологического поглощения циркония в 13 раз меньше. Причина – его слабое участие в биологических процессах и преобладание форм, трудно доступных для растений. Глобальные геохимические закономерности растительности суши, по-видимому, имеют глубокое физиологическое и эволюционное обоснование.
Поглощение химических элементов растениями – процесс, в значительной мере регулируемый организмом в зависимости от характера строения и химического состава клеточных оболочек у разных видов, составляет всего 2–3% от всей массы усвоенных минеральных элементов. Однако регулирование растением поглощения элементов имеет место только при питании из уравновешенных растворов с низкой концентрацией минеральных веществ. При повышении концентрации процессы регуляции в значительной степени подавляются, в результате чего происходит значительное накопление элементов в растительном организме.
При повышении уровня загрязнения инактивация токсикантов в почве становится неполной и поток ионов начинает атаковать корни. Часть ионов растение способно перевести в менее активное состояние еще до проникновения их в корни: хелатировать (связывать) с помощью
корневых выделений и адсорбировать на внешней поверхности корней. И все же большое количество токсикантов попадает в корень, где частично адсорбируется на стенках. Если в клетках корня окажется ионов все же больше допустимого уровня, то начинает действовать еще один механизм защиты, переводящий излишек в вакуоли. При продвижении по проводящим тканям растения элементы могут поглощаться ее стенками, а также закомплексовываться присутствующими в клеточном соке органическими соединениями. Для проникновения в клетку листа элементу необходимо преодолеть клеточную мембрану, то есть по аналогии с корнями здесь действует механизм избирательного поглощения.
Помимо поступления тяжелых металлов в растение через корни из загрязненных почв существует еще один путь – поглощение металлов через листовую поверхность из газопылевых выбросов и аэрозолей.
При увеличении поступления химических элементов в природные среды возможно изменение химического состава живых организмов. Мигрируя по пищевым цепям, микроэлементы могут накапливаться в органах и тканях растительных и животных организмов в токсичных концентрациях. Это обстоятельство необходимо учитывать, так как конечным звеном трофической цепи является человек. Сельскохозяйственная продукция и промысловые объекты с превышением уровня ПДК микроэлементов могут оказаться опасными для здоровья человека при использовании их в пищу и в качестве сырья для изготовления медицинских препаратов.
Ртуть – единственный металл, который находится в обычных условиях в виде жидкости и интенсивно выделяет пары. Из неорганических соединений ртути наиболее опасны металлическая ртуть, выделяемые пары и хорошо растворимые соли ртути. Соединения двухвалентной ртути токсичнее, чем одновалентные.
В 1972 г. С. Йенсен и А. Йермелов высказали предположение о наличии двух разных круговоротов ртути в окружающей среде – глобального (включающего циркуляцию паров ртути в атмосфере) и локального (основанного на предполагаемой циркуляции летучих соединений ди-метилртути). Основная часть вовлекаемой в глобальный круговорот ртути принадлежит ртути, поступающей преимущественно в результате техногенной деятельности.
Считается, что основным природным источником ртути служит общая дегазация земной коры и океана (по грубым оценкам – 8– 10 тыс. т/год).
Ртуть давно известна как яд. Выражение «сошел с ума как шляпочник» появилось в те времена, когда многие люди, занимавшиеся изготовлением фетровых шляп, страдали психическими расстройствами из-за высоких концентраций ртути, применявшейся в шляпном деле. В легких случаях отравление вызывает бессонницу, неспособность вос-57
принимать критику, страхи, головную боль, депрессию и неадекватные эмоциональные реакции.
Ни один известный биоцид не изучен так хорошо, как ртуть, в отношении своей циркуляции в пищевых цепях и зависящей от нее опасности для человека и животных. Это утверждение относится, прежде всего, к метилртути, которая представляет собой особо эффективный фунгицид, но одновременно очень токсична для теплокровных и очень стабильна.
Как показывают имеющиеся данные, в настоящее время наиболее опасные и критические ситуации, связанные с загрязнением ртутью, проявляются в связи с ее поступлением в водные экосистемы. Свидетельством этому являются широко известные события в Японии, Швеции, Северной Америке.
В районе Минамата (Япония) заболело около 120 человек; 46 из них умерли раньше, чем исследователи обнаружили, что люди и животные отравлялись выловленными в заливе моллюсками и рыбой, содержащими большие количества ртути. Источником ртути оказалась фабрика пластмасс, расположенная на реке, впадающей в залив Минамата. Хотя для рыбы ртуть так же токсична, как и для людей, концентрации ее в воде залива были не столь высоки, чтобы рыбы и моллюски не могли здесь жить. Ртуть из следового элемента превратилась в источник эпидемиологического заболевания.
Согласно оценкам ученых, предприятия по производству хлора и каустической соды в США до начала семидесятых годов отдавали в стоки от 100 до 200 г ртути на каждую тонну произведенной каустической соды. Концентрация ртути в рыбе, выловленной в этой реке, оказалась такой же высокой, как и в рыбе из залива Минамата. Более того, у кошек при кормлении их рыбой из этой реки появились признаки отравления ртутью. В настоящее время законы строго запрещают сброс ртути с промышленными отходами. Однако в тех местах, где раньше сбрасывали ртуть в среду, например при производстве бумаги и каустической соды, ртуть в донном иле до сих пор загрязняет воду и живущие в ней организмы. Во многих штатах США ограничены рыбная ловля, поскольку в рыбе накапливается ртуть, сброшенная с отходами в воду много лет назад. Один из крупнейших выбросов ртути в США имел место в Ок-Ридже (штат Тенесси) на заводе Y-12, выпускающем компоненты оружия. В 1983 г. частное исследование, предпринятое чиновниками Ок-Риджа, показало, что, по-видимому, произошло серьезное загрязнение ртутью растительности и рыбы в окрестностях этого предприятия.
Постепенно выяснилось, что примерно 1 млн кг элементарной ртути попало в окружающую среду; вероятно, большая часть ее медленно просачивалась в глубокие щели и трещины в породах, находящихся под
заводом. Около 200 тыс. кг было сброшено непосредственно в проток Ист-Форк-Поплар. Выловленная вблизи завода рыба содержала в два раза больше ртути, чем верхний предел, определяемый согласно закону 1·10-6 (одна часть на миллион).
Ртуть аккумулируют планктонные организмы (например водоросли), которыми питаются ракообразные. Ракообразных поедают рыбы, а рыб - птицы. Концевыми звеньями пищевых цепей нередко бывают чайки, чомги, скопы, орланы-белохвосты. В Швеции содержание ме-тилртути в организме птиц, в значительной части питающихся рыбой, приблизилось к тем уровням, при которых зерноядные наземные птицы уже погибали от действия ртути, полученной при поедании посевного зерна (в Швеции в 1940-х годах зерно протравливали метилртутьдициа-намидом).
В водной пищевой цепи концентрация метилртути от звена к звену увеличивается. Так как метилртуть растворима в жирах, она легко переходит из воды в водные организмы. При захвате мельчайших живых существ более крупными, для которых они служат пищей, это вещество сохраняется в последних. Так как у него период полураспада (особенно в организмах с низким уровнем обмена веществ) необычайно длителен (у человека 70 дней), яд не выделяется, а, наоборот, накапливается в организме. Особенно страдают от этого морские млекопитающие, так как они живут всецело за счет питания рыбой.
Каким бы путем ртуть ни попадала в воду, микроорганизмы метилируют ее, и при этом всегда образуется метилртуть (рис. 6).