АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Приближение линейного натяжения (определение прогиба дислокации)

Прочитайте:
  1. Вывихи и переломо-вывихи (определение, клиника, диагностика и лечение).
  2. Г. Реакция нейтрализации на чашках Петри (определение токсигенности культур бактерий in vitro)
  3. Острые коронарные синдромы (определение)
  4. Острые коронарные синдромы (определение)
  5. Острые коронарные синдромы (определение)
  6. Острые коронарные синдромы (определение)
  7. Переломы костей (определение, классификация, симптомы, осложнения).
  8. Рисунки 24 и 25 Вскрытие полости толстой кишки. Закрытие одним слоем простыни узловатыми перфорирующими швами, если нет большого натяжения.

Для оценки энергии дислокации часто пользуются формулой (3.19), т. е. считают энергию дислокации пропорциональной ее длине и не зависящей от ее формы. В этом приближении можно считать дислокацию трубкой в кристалле, обладающей избыточной энергией

(3.27)

на единицу длины.

Известно, что коэффициент поверхностного натяжения жидкости можно рассматривать двояко: как силу, действующую на единицу длины мысленного разреза поверхности жидкости, или как избыточную энергию единицы поверхности. По аналогии с жидкостью энергию единицы длины дислокации w 0 одновременно можно рассматривать как силу, действующую перпендикулярно нормальному сечению дислокационной трубки, т. е. как силу, действующую вдоль касательной к линии дислокации. Поэтому дислокационную трубку можно представить как натянутый резиновый шнур с постоянной по длине силой натяжения Е 0. Такое представление дислокации и носит название «приближение линейного натяжения». Оно обычно используется для нахождения формы дислокационных отрезков в поле напряжений. Соответствующие задачи аналогичны задачам о форме натянутого резинового шнура, на который действуют распределенные силы.

Рис. 3.18. Схема к задаче о нахождении равновесной конфигурации дислокационного отрезка, закрепленного на концах А и В, в поле постоянного напряжения τ

Рассмотрим, например, задачу о равновесии дислокационного отрезка, закрепленного на концах (рис. 3.18), в поле постоянного напряжения τ. На отрезок dl дислокации (при малом прогибе этот отрезок любой) вдоль оси х действуют силы

.

Так как

то F 1 +F 2=0,

откуда

. (3.28)

Таким образом, дислокационный отрезок равномерно прогнут с радиусом кривизны, определяемым формулой (3.28).

Считается, что приближение линейного натяжения применимо, если логарифмический член в формуле для энергии изменяется слабо. Для одиночных дислокаций приближение линейного натяжения может быть использовано для малых их прогибов, когда радиус их кривизны остается много больше их длины.


Дата добавления: 2015-09-18 | Просмотры: 465 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)