АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Химический состав клетки
Все клетки организма человека сходны по химическому составу, в них входят как неорганические, так и органические вещества.
Неорганические вещества. В составе клетки обнаруживают более 80 химических элементов. При этом на долю шести из них — углерода, водорода, азота, кислорода, фосфора и серы приходится около 99 % общей массы клетки. Химические элементы находятся в клетке в виде различных соединений.
Первое место среди веществ клетки занимает вода. Она составляет около 70 % массы клетки. Большинство реакций, протекающих в клетке, может идти только в водной среде. Многие вещества поступают в клетку в водном растворе. Продукты обмена веществ выводятся из клетки также в водном растворе. Благодаря наличию воды клетка сохраняет свои объем и упругость. К неорганическим веществам клетки, кроме воды, относятся соли. Для процессов жизнедеятельности клетки наиболее важны катионы < К+, Na+, Mg2+, Са2+, а также анионы — Н2РСГ4, СГ, НСО"3. Концентрация катионов и анионов внутри клетки и вне ее различная. Так, внутри клетки всегда довольно высокая концентрация ионов калия и низкая ионов натрия. Напротив, в окружающей клетку среде, в тканевой жидкости, меньше ионов калия и больше ионов натрия. У живой клетки эти различия в концентрациях ионов калия и натрия между внутриклеточной и внеклеточной средами сохраняют постоянство.
Органические вещества. Почти все молекулы клетки относятся к соединениям углерода. Благодаря наличию на внешней оболочке четырех электронов атом углерода может образовывать четыре прочные ковалентные связи с другими атомами, создавая большие и сложные молекулы. Другими атомами, которые широко представлены в клетке и с которыми легко соединяются атомы углерода, являются атомы водорода, азота и кислорода. Они, как и углерод, имеют небольшие размеры и способны образовывать очень прочные ковалентные связи.
Большинство органических соединений образует молекулы больших размеров, получивших название макромолекул (от греч. mаkros — большой). Такие молекулы состоят из повторяющихся сходных по структуре и связанных между собой соединений — мономеров (от греч. м ono.s — один). Образованная мономерами макромолекула называется полимером (от греч. poly — много).
Основную массу цитоплазмы и ядра клетки составляют белки. В состав всех белков входят атомы водорода, кислорода и азота. Во многие белки входят, кроме того, атомы серы, фосфора. Каждая молекула белка состоит из тысяч атомов. Существует огромное количество различных белков, построенных из аминокислот.
В клетках и тканях животных и растительных организмов встречается свыше 170 аминокислот. Каждая аминокислота имеет карбоксильную группу (СООН), имеющую кислотные свойства, и аминогруппу (—NH2), имеющую основные свойства. Участки молекул, не занятые карбокси- и аминогруппами, называют радикалами (R). В простейшем случае радикал состоит из одного атома водорода, а у более сложных аминокислот он может быть сложной структурой, состоящей из многих атомов углерода.
К числу важнейших аминокислот относятся аланин, глутаминовая и аспарагиновая кислоты, пролин, лейцин, цистеин. Соединения аминокислот друг с другом называют пептидными связями. Образовавшиеся соединения аминокислот называют пептидами. Пептид из двух аминокислот называется дипептидом, из трех аминокислот — трипептидом, из многих аминокислот — полипептидом. В состав большинства белков входит 300 — 500 аминокислот. Имеются и более крупные молекулы белка, состоящие из 1500 и более аминокислот. Белки различаются составом, числом и порядком чередования аминокислот в полипептидной цепи. Именно последовательность чередования аминокислот имеет первостепенное значение в существующем разнообразии белков. Многие молекулы белков имеют большую длину и большую молекулярную массу. Так, молекулярная масса инсулина составляет 5700, гемоглобина — 65 000, а молекулярная масса воды равна всего 18.
Полипептидные цепи белков не всегда вытянуты в длину. Напротив, они могут скручиваться, изгибаться или свертываться самым различным образом. Разнообразие физических и химических свойств белков обеспечивают особенности выполняемых ими функций: строительной, двигательной, транспортной, защитной, энергетической.
Входящие в состав клеток углеводы также являются органическими веществами. В состав углеводов входят атомы углерода, кислорода и водорода. Различают простые и сложные углеводы. Простые углеводы называются моносахаридами. Сложные углеводы представляют собой полимеры, в которых моносахариды играют роль мономеров. Из двух мономеров образуется дисахарид, из трех — трисахарид, из многих — полисахарид. Все моносахариды — бесцветные вещества, хорошо растворимые в воде. Самые распространенные моносахариды в животной клетке — глюкоза, рибоза, дезоксирибоза.
Глюкоза является первичным источником энергии для клетки. При расщеплении она превращается в оксид углерода и воду (СО2+ i Н2О). В ходе этой реакции освобождается энергия (при расщеплении 1 г глюкозы освобождается 17,6 кДж энергии). Рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ.
Липиды состоят из тех же химических элементов, что и углеводы, — углерода, водорода и кислорода. Липиды не растворяются в воде. Самые распространенные и известные липиды — это жиры, являющиеся источником энергии. При расщеплении жиров выделяется в два раза больше энергии, чем при расщеплении углеводов. Липиды гидрофобны и поэтому входят в состав клеточных мембран.
В состав клеток входят нуклеиновые кислоты — ДНК и РНК. 11азвание «нуклеиновые кислоты» происходит от латинского слова «нуклеус», т.е. ядро, где они были впервые обнаружены. Нуклеиновые кислоты представляют собой последовательно соединенные друг с другом нуклеотиды. Нуклеотид — это химическое соединение, состоящее из одной молекулы сахара и одной молекулы органического основания. Органические основания при взаимодействии с кислотами могут образовывать соли.
Каждая молекула ДНК представляет собой две цепи, спирально закрученные одна вокруг другой. Каждая цепь является полимером, мономерами которого служат нуклеотиды. Каждый нуклеотид содержит одно из четырех оснований — аденин, цитозин, гуанин или тимин. При образовании двойной спирали азотистые основания одной цепи «стыкуются» с азотистыми основаниями другой. Основания подходят друг к другу настолько близко, что между ними возникают водородные связи. В расположении соединяющихся нуклеотидов имеется важная закономерность, а именно: против аденина (А) одной цепи всегда оказывается тимин (Т) другой цепи, а против гуанина (Г) одной цепи — цитозин (Ц). В каждом из этих сочетаний оба нуклеотида как бы дополняют друг друга. Слово «дополнение» на латинском языке обозначает «комплемент». Поэтому принято говорить, что гуанин является комплементарным цитозину, а тимин комплементарен аденину. Таким образом, если известен порядок следования нуклеотидои в одной цепи, то по принципу комплементарности сразу же выясняется порядок нуклеотидов в другой цепи.
В полинуклеотидпых цепях ДНК каждые три следующих друг за другом нуклеотида составляют триплет (совокупность из трех компонентов). Каждый триплет — это не просто случайная группа из трех нуклеотидов, а кодагсн (по-гречески кодаген — участок, образующий кодом). Каждый кодон кодирует (шифрует) только одну аминокислоту. С каждым триплетом ДНК соединяется комплементарный триплет РНК. Триплет РНК называют кодоном. В последовательности кодонов заключена информация о последовательности аминокислот в белках. Эта информация скопирована с информации, записанной в последовательности кодогенов в молекуле ДНК. ДНК обладает уникальным свойством — способностью к удвоению, которым не обладает ни одна другая из известных молекул.
Молекула РНК также является полимером. Мономерами ее являются нуклеотиды. РНК представляет собой молекулу, образованную одной цепочкой. Эта молекула построена таким же образом, как и одна из цепей ДНК. В РНК, так же как и в ДНК, присутствуют триплеты — комбинации из трех нуклеотидов, или информационные единицы. Каждый триплет управляет включением в белок совершенно определенной аминокислоты. Порядок чередования строящихся аминокислот определяется последовательностью триплетов РНК. Информация, содержащаяся в РНК, —это информация, полученная от ДНК. В основе передачи информации лежит уже известный принцип комплементарности.
В отличие от ДНК, содержание которой в клетках конкретных организмов относительно постоянно, содержание РНК колеблется и зависит от синтетических процессов в клетке.
По выполняемым функциям выделяют несколько видов РНК: транспортная РНК (тРНК) в основном содержится в цитоплазме к истки; рибосомная РНК (рРНК) составляет существенную часть структуры рибосом; информационная РНК (иРНК), или матричная (мРНК), содержится в ядре и цитоплазме клетки и переносит информацию о структуре белка от ДНК к месту синтеза белка в рибосомах. Все виды РНК синтезируются на ДНК, которая служит своего рода матрицей.
Аденозинтрифосфорная кислота (АТФ) содержится в каждой клетке. По химической структуре АТФ относится к нуклеотидам. В ней и в каждом нуклеотиде содержатся одна молекула органического основания (аденина), одна молекула углевода (рибоза) и три молекулы фосфорной кислоты. АТФ существенно отличается от обычных нуклеотидов наличием не одной, а трех молекул фосфорной кислоты.
Аденозинмонофосфорная кислота (АМФ) входит в состав всех РНК. При присоединении еще двух молекул фосфорной кислоты она превращается в АТФ и становится источником Энергии. Именно связь между второй и третьей молекулами фосфорной кислоты богата химической энергией. Химическая энергия фосфатной связи может легко передаваться другим химическим соединениям клетки. При отщеплении одной молекулы фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту). Если от АТФ отщепляются две молекулы фосфорной кислоты, АТФ переходит в АМФ. Реакция отщепления каждой молекулы фосфорной кислоты сопровождается освобождением 419 кДж/моль энергии.
Ферменты (от лат. fermentum — закваска) являются ускорителя ми реакций в живых клетках. В отсутствие ферментов реакции органических соединений протекают с малой скоростью. Ферменты, расщепляющие углеводы, называют сахарозами, отщепляющие водород — дегидрогеназами, расщепляющие жиры — липазами.
Контрольные вопросы
1.Какие химические элементы входят в состав клеток?
2.Назовите основные неорганические вещества, входящие в состав клеток.
3.Перечислите основания, входящие в состав органических молекул клеток.
4.Опишите особенности строения белка как полимера.
5.Охарактеризуйте биологическую роль углеводов и липидов.
6.Какие виды нуклеиновых кислот обнаруживаются в клетках?
7.Какова биологическая роль ДНК и РНК? Сравните их структуру.
8.Какие особенности строения определяют основную функцию АТФ?
Функции клетки
Любая клетка обладает всеми признаками живой материи. Это обмен веществ, способность реагировать на внешние воздействия (раздражимость), возбудимость, рост, размножение (способность к самовоспроизведению и передаче генетической информации), регенерация (восстановление), приспособление (адаптация).
Обмен веществ в живой клетке происходит с поглощением веществ из окружающей среды и выделением в окружающую среду продуктов жизнедеятельности. Все реакции, протекающие в клетке, можно подразделить на анаболические и катаболические.
Анаболические реакции — это синтез крупных молекул из более мелких и простых. Для этих процессов необходимы затраты энергии. Из поступающих в клетку глюкозы, аминокислот, органических кислот и нуклеотидов в клетке непрерывно синтезируются белки, углеводы, липиды и нуклеиновые кислоты. Из этих веществ формируются мембраны клетки, ее органеллы и другие структуры. Синтез веществ особенно интенсивно происходит в молодых, растущих клетках. Химический состав клетки в течение жизни многократно обновляется. Вещества, поступившие в клетку, участвуют в процессах биосинтеза (биосинтез — это процесс образования биологических структур — белков, жиров и углеводов из более простых веществ). В процессе биосинтеза образуются вещества, необходимые для жизнедеятельности, функционирования клетки. Например, в мышечных волокнах скелетных мышц, миоцитах гладкой мышечной ткани синтезируются белки, обеспечивающие их сокращение. Процессы, в результате которых образуется живая материя, называются анаболизмом (ассимиляцией).
Одновременно с биосинтезом в клетках происходит распад, разрушение органических соединений. В результате распада образуются вещества более простого строения (вода, углекислый газ, мочевина и т.д.). Большая часть реакций распада идет с участием кислорода и с освобождением энергии. Процессы расщепления крупных молекул органических соединений называются катаболизмом (диссимиляция).
Катаболические реакции происходят обычно с выделением энергии. Некоторые реакции, связанные с освобождением клетки от токсических веществ, идут с затратой энергии. Совокупность катаболических и анаболических реакций, протекающих в клетке в любой данный момент, составляет ее метаболизм (процесс обмена веществ). Поступающие в клетку органические вещества служат материалами для строительства клеточных компонентов, а также источником химической энергии. При расщеплении питательных веществ высвобождается энергия. Значительную ее часть клетка использует на поддержание своих жизненных процессов. Это могут быть биосинтез, клеточное деление, активный транспорт веществ, а в некоторых специализированных клетках — мышечное сокращение, электрические импульсы и т.д. Наиболее пригодна для использования в клетке химическая энергия, так как она может быстро распространяться из одной части клетки в другую, а также из клетки в клетку и расходоваться экономно — строго отмеренными порциями. Источником энергообеспечения любой клеточной функции является АТФ. АТФ имеется во всех живых клетках, поэтому ее называют универсальным носителем энергии. Однако запас ее в клетке невелик. (Так, например, в мышце запаса АТФ хватает на 20 — 30 сокращений.) Поэтому наряду с распадом АТФ в клетке происходит ее непрерывный синтез. Совокупность реакций, обеспечивающих клетки энергией, называют энергетическим обменом.
Источником получения аденозинтрифосфорной кислоты является окисление органических соединений — углеводов, жиров и белков (клеточное дыхание). Большинство клеток для окисления использует в первую очередь углеводы, которые гидролизуются до глюкозы. Жиры составляют «первый резерв» и пускаются в дело главным образом тогда, когда запас углеводов исчерпан. Белки используются лишь после того, как будет израсходован весь запас углеводов и жиров, например при длительном голодании. Расщепление глюкозы, в результате которого происходит синтез АТФ, осуществляется в две следующие одна за другой стадии.
Первая стадия — бескислородное расщепление глюкозы, или гликолиз. Вторую стадию называют кислородным окислением. Гликолизом называют цепь последовательных реакций, в результате которых одна молекула глюкозы расщепляется на две молекулы пировиноградной кислоты и две молекулы АТФ. Эта реакция протекает не в митохондриях, а в цитоплазме клетки. Для этой реакции не требуется присутствия кислорода. Если синтез АТФ происходит в цитоплазме и не нуждается в мембранах, то для осуществления кислородного процесса необходимо наличие митохондриальных мембран. «Топливом» для окислительного метаболизма в митохондриях служат главным образом жирные кислоты и пировиноградная кислота. Расщепление в клетке одной молекулы глюкозы до СО2 и Н2О обеспечивает синтез 38 молекул АГФ. В бескислородную стадию образуется две молекулы, а в кислородную — 36 молекул АТФ.
Раздражимость клетки — это способность активно отвечать на внешние и внутренние воздействия. На воздействие клетки отвечают изменением обмена веществ, сокращением или образованием нервных импульсов и т.д. Факторы, вызывающие изменения функций клетки, называют раздражителями. Одной из форм реакций клеток в ответ на действие раздражителей является возбуждение. Возбуждение — это сложная биологическая реакция, обязательным признаком которой является изменение мембранного потенциала. При этом в клетках между двумя поверхностями цитоплазматической мембраны поддерживается разность потенциалов, т. е. электрический заряд. Строение и функции цитоплазматической мембраны во всех клетках таковы, что внутренняя ее поверхность заряжена отрицательно по отношению к внешней поверхности. Разность потенциалов между наружной и внутренней поверхностями мембраны клетки, находящейся в покое, называют мембранным потенциалом, или потенциалом покоя. В зависимости от типа клеток или организма величина потенциала покоя варьирует от -20 до -200 мВ. Действующий раздражитель вызывает изменения мембранного потенциала (деполяризацию) и возникновение потенциала действия. Однако деполяризация цитоплазматической мембраны и возникновение потенциала действия характерны только для нервных, мышечных и железистых клеток. Эти биологические структуры способны осуществлять быстрые реакции па раздражения. При возбуждении в клетках изменяется скорость анаболических и катаболических реакций и выполняются специфические, свойственные им функции. Железистые клетки образуют и выделяют секреты, мышечные — сокращаются, нервные клетки образуют нервные импульсы.
Контрольные вопросы
1.Перечислите функции клетки.
2.Какую роль выполняет в клетках АТФ?
3.Что вы знаете об энергетическом значении в организме углеводов, жиров, белков?
4.Расскажите о бескислородном и кислородном расщеплении углеводов.
5.Какой процесс называют раздражимостью клетки, что происходит с клеткой при действии на нее раздражителей?
6.Что такое потенциал покоя и потенциал действия, в каких функциях клетки они проявляются?
Дата добавления: 2015-10-20 | Просмотры: 1682 | Нарушение авторских прав
|