АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Первичная структура нуклеиновых кислот

Прочитайте:
  1. III. Исследование функции почек по регуляции кислотно-основного состояния
  2. Азотистое основание Углеводный компонент Фосфорная кислота
  3. Азотистое основание Углеводный компонент Фосфорная кислота
  4. Аминокислоты
  5. Антигенная структура
  6. Антигенная структура
  7. Антигенная структура
  8. Антигенная структура
  9. Антигенная структура
  10. Антигенная структура

 

Нуклеиновые кислоты представляют собой полинуклеотид-монофосфаты. Полимерная цепь образуется за счет фосфодиэфирной связи между 3'-гидроксилом одного нуклеотида и 5'-гидроксилом другого. Таким образом, первичная структура нуклеиновых кислот представляет собой порядок чередования нуклеотидов в полинуклеотидной цепи. Один из концов этой цепи (изображаемый слева) имеет свободный гидроксил при 5'- атоме углерода, а другой (изображаемый справа) – свободный гидроксил при 3'- атоме углерода рибоз. Поскольку основой нуклеиновых кислот является САХАРОФОСФАТНЫЙ ОСТОВ, в сокращенных написаниях участков цепи используют лишь ОДНОБУКВЕННЫЕ СИМВОЛЫ соответствующего азотистого основания.

 

5 ' -НО-G-A-A- T-C-T-A-C-A-… 3 '

 

В образовании первичной структуры принимают участие гликозидная связь, соединяющая азотистые основания с пентозой, эфирная связь между рибозой или дезоксирибозой и фосфорной кислотой и фосфодиэфирная связь между нуклеотидами. Все эти связи ковалентные, достаточно прочно стабилизируют первичную структуру.

К настоящему времени удалось определить первичную структуру почти всех тРНК, ряда молекул 5S рРНК, 16S рРНК Е. соli, вирусных РНК, в состав которых входят сотни и тысячи нуклеотидных остатков.

В выяснении первичной структуры РНК решающую роль сыграли методы ступенчатого гидролиза, осуществленного в основном экзонуклеа-зами и заключающегося в последовательном отщеплении по одному мононуклеотиду с одного конца молекулы нуклеиновой кислоты.

Следует особо указать на две существенные особенности первичной структуры всех тРНК. Первая из них заключается в том, что 5'-концом всегда является гуаниловая (редко цитидиловая) кислота, несущая свободный остаток фосфата у С-5'. Вторая особенность – наличие на противоположном конце молекулы остатков трех мононуклеотидов с одинаковой последовательностью – ЦЦА, причем остаток адениловой кислоты содержит свободную З'-ОН группу.

Между этими структурами в строго определенной последовательности располагаются все остальные нуклеотидные остатки, среди которых на долю минорных нуклеотидов приходится до 10%. Полинуклеотидная цепь разных типов тРНК содержит около 75 нуклеотидов.

Матричные (информационные) РНК относятся к наиболее гетерогенному классу нуклеиновых кислот, отличающихся по массе, структуре, размерам, стабильности и функциям. Основной функцией мРНК является перенос информации от ДНК (точнее, от гена) на белоксинте-зирующую систему клетки. мРНК выполняет роль матрицы и, следовательно, определяет первичную структуру синтезируемого белка. мРНК наделены рядом особенностей первичной структуры; в частности, н 5'-конце все они содержат определенную последовательность рибонуклеотидов, получившую название «шапочки» (кэп). Первым нуклеотидом является 7-метилгуанозинтрифосфат, который присоединяется к 5'-гидроксилу соседнего мононуклеотида, представленного 2'-О-метилпуриновым нуклеотидом. На другом З'-конце большинства (но не всех) мРНК содержится полиадениловая последовательность (поли-А), насчитывающая от 150 до 200 нуклеотидов.

Роль «кэпирования» и «полиаденилирования» мРНК в белковом синтезе окончательно не выяснена. Предполагают, что кэп необходим для специфического узнавания в процессе трансляции, в то время как поли-А отводится роль фактора стабилизации всей молекулы мРНК.

В настоящее время проводятся исследования первичных структур различных молекул ДНК. Полностью расшифрована нуклеотидная последовательность митохондриальной ДНК человека (16569 пар нуклеотидов). Известны полные нуклеотидные последовательности ДНК различных вирусов, бактерий, дрожжей и плазмид. Исследователи активно работают над полной расшифровкой генома человека.

О первичной структуре ДНК (точнее, отдельных ее фрагментов) судят по ряду косвенных данных, например, по степени сблоченности нуклеотидных звеньев в молекуле ДНК (определение сводится в конечном счете к выяснению числа и структуры отдельных фракций нуклеотидов, так называемых изоплитов), также по кинетике реассоциации ДНК (метод позволяет выяснить наличие в молекуле повторяющихся последовательностей нуклеотидов). О первичной структуре ДНК судят, кроме того, по распределению минорных оснований (имеются данные о существовании подобной закономерности) и обнаружению в ДНК и определению последовательности палиндромов («обратно бегущие» последовательности, или перевертыши), которые обнаруживаются главным образом в местах рестрикции.

Таким образом, первичная структура молекулы ДНК представляет собой линейную цепь нуклеозидов, связанных молекулами фосфорной кислоты в положениях 3'- и 5'- остатков пентозы, т. е. представляет собой полинуклеотид, молекулярная масса которого колеблется от 200 000 до
20 000 000. На рис. 1 представлена повторяющаяся структурная единица молекулы ДНК, содержащая четыре нуклеотидных звена.

 

 

Рис. 1. Структурная единица молекулы ДНК

 


Дата добавления: 2015-09-27 | Просмотры: 576 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)