АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Мутационная

Прочитайте:
  1. Мутационная изменчивость
  2. Мутационная изменчивость
  3. Мутационная изменчивость
  4. Мутационная изменчивость. Генетические рекомбинации. Практическое значение изменчивости микроорганизмов. Понятие о генной инженерии и биотехнилогии.
  5. Тема 7. Мутационная изменчивость. Классификация мутаций.

Мутация- скачкообразное изменение генетического материала под влиянием факторов внешней или внутренней среды, передающ. по наследству. Мутагенез -процесс образования мутации. Мутагены -факторы,вызывающие мутации. Мутагены первоначально воздействуют на генетический материал особи, вследствие чего может измениться генотип Мутагены:

1) физические -различные виды излучений. Основные механизмы действия:

· нарушение структуры гена и хромосом

· образование свободных радикалов, кот. вступают в химич. воздействие с ДНК

2) химические (природные органич. и неорганич. вещества:гормоны, ферменты, нитриты, нитраты; продукты промышл. переработки,синтетические вещества, ранее не встречавшиеся в природе (консерванты, лекарства). Химические мутагены обладают большой проникающей способностью действ. в период репликации ДНК

3) биологические (вирусы: корь, грипп; вневирусные паразит. агенты)

· вирусы встраивают свою ДНК в ДНК клетки хозяина

· продукты жизнедеятельности

 

 

17. Классификация мутаций. Значение мутационной изменчивости. Генные мутации. Причины и механизмы их возникновения, значение.

различают следующие виды мутаций:

геномные;

хромосомные;

генные.

Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях.

Так же мутации бывают летальные нейтральные и положительные.

 

Мутационная изменчивость — изменчивость, вызванная действием на организм мутагенов, вследствие чего возникают мутации (реорганизация репродуктивных структур клетки). Мутагены бывают физические (радиационное излучение), химические (гербициды) и биологические (вирусы).

Основные положения мутационной теории в 1901—1903 годах разработал Гуго де Фриз:

Мутации возникают внезапно, скачкообразно, как дискретные изменения признаков.

В отличие от ненаследственных изменений мутации представляют собой качественные изменения, которые передаются из поколения в поколение.

Мутации проявляются по-разному и могут быть как полезными, так и вредными, как доминантными, так и рецессивными.

Вероятность обнаружения мутаций зависит от числа исследованных особей.

Сходные мутации могут возникать повторно.

Мутации ненаправленны (спонтанны), то есть мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

Почти любое изменение в структуре или количестве хромосом, при котором клетка сохраняет способность к самовоспроизведению, обусловливает наследственное изменение признаков организма. По характеру изменения генома, то есть совокупности генов, заключенных в гаплоидном наборе хромосом, различают генные, хромосомные и геномные мутации.

Роль в эволюции

На наследственной изменчивости основано всё разнообразие индивидуальных различий, которые включают:

Как резкие качественные различия, не связанные друг с другом переходными формами, так и чисто количественные различия, образующие непрерывные ряды, в которых близкие члены ряда могут отличаться друг от друга сколь угодно мало;

Как изменения отдельных признаков и свойств (независимая изменчивость), так и взаимосвязанные изменения ряда признаков (коррелятивная изменчивость);

Как изменения, имеющие приспособительное значение (адаптивная изменчивость), так и изменения «безразличные» или даже снижающие жизнеспособность их носителей (неадаптивная изменчивость).

Все эти типы наследственных изменений составляют материал эволюционного процесса (см. Микроэволюция). В индивидуальном развитии организма проявление наследственных признаков и свойств всегда определяется не только основными, ответственными за данные признаки и свойства генами, но и их взаимодействием со многими другими генами, составляющими генотип особи, а также условиями внешней среды, в которой протекает развитие организма.

Неоспоримо важна точность при передаче генетической информации в ряду поколений, однако чрезмерная консервация генетической информации, заключенной в отдельных генетических локусах, может быть вредной для организма и вида в целом.

Эволюционно сложившиеся отношения между точностью функционирования генетических систем и частотой ошибок, возникающих при воспроизведении генетической информации отдельных генетических локусов, четко сбалансированы между собой, и уже установлено, что в ряде случаев являются регулируемыми. Запрограммированные и случайные наследуемые изменения генома, называемые мутациями, могут сопровождаться колоссальными количественными и качественными изменениями в экспрессии генов.

 

18. Генные мутации. Причины и механизмы их возникновения, значение.

Генные, или точковые, мутации связаны с изменением состава или последовательности нуклеотидов в пределах участка ДНК - гена. Нуклеотид внутри гена может быть заменен на другой или потерян, может быть вставлен лишний нуклеотид и т.д. Генные мутации могут привести к тому, что мутантный ген либо перестанет работать и тогда не образуются соответствующие и-РНК и белок, либо синтезируется белок с измененными свойствами, что приводит к изменению фенотипических признаков особи. Вследствие генных мутаций образуются новые аллели, что имеет большое эволюционное значение.

В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. Если под действием мутации изменяется один нуклеотид, говорят о точковых мутациях. Точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Из-за вырожденности генетического кода могут быть три генетических последствия точковых мутаций: сохранение смысла кодона (синонимическая замена нуклеотида), изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация) или образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация).

 

19. Геномные мутации. Полиплоидия. Возникновение и характеристика полиплоидов. Работа Г. Д. Карпеченко. Система новых видов.

Геномные мутации - связанные с изменением числа хромосом. Особый интерес представляет ПОЛИПЛОИДИЯ - кратное увеличение числа хромосом, т.е. вместо 2n хромосомного набора возникает набор 3n,4n,5n и более. Возникновение полиплоидии связанно с нарушением механизма деления клеток. В частности, нерасхождение гомологичных хромосом во время первого деления мейоза приводит к появлению гамет с 2n набором хромосом. Полиплоидия широко распространена у растений и значительно реже у животных (аскарид, шелкопряда, некоторых земноводных). Полиплоидные организмы, как правило, характеризуются более крупными размерами, усиленным синтезом органических веществ, что делает их особенно ценными для селекционных работ. Полиплоиды получают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. Полиплоиды обычно устойчивы к неблагоприятным воздействиям, и в экстремальных условиях естественный отбор будет благоприятствовать их возникновению. Так, на Шпицбергене и Новой Земле около 80% видов высших растений представлены полиплоидными формами. Полиплоидия может быть вызвана искусственно (например, алкалоидом колхицином). У многих полиплоидных форм растений более крупные размеры, повышенное содержание ряда веществ, отличные от исходных форм сроки цветения и плодоношения. Существуют методы, позволяющие экспериментально получать полиплоидиые растения. За последние годы с их помощью созданы полиплоидные сорта ржи, гречихи, сахарной свеклы. Впервые отечественный генетик Г. Д. Карпеченко в 1924 г. на основе полиплоидии преодолел бесплодие и создал капустно-редечный гибрид Капуста и редька в диплоидном наборе имеют по 18 хромосом (2п = 18), Соответственно их гаметы несут по 9 хромосом (гаплоидный набор). Гибрид капусты и редьки имеет 18 хромосом. Хромосомный набор слагается из 9 «капустных;» и 9 «редечных» хромосом. Этот гибрид бесплоден, так как хромосомы капусты и редьки не конъюгируют, поэтому процесс образования гамет не может протекать нормально, В результате удвоения числа хромосом в бесплодном гибриде оказались два полных (диплоидных) набора хромосом редьки и капусты (36). Вследствие этого возникли нормальные условия для мейоза: хромосомы капусты и редьки соответственно конъюгнровали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; гибрид стал плодовитым. Методом полиплоидизацни отечественные селекционеры создали ранее не встречавшуюся в природе ржано-пшеничную форму — тритикале. Создание тритикале — нового вида зерновых, обладающего выдающимися качествами,— одно из крупнейших достижений селекции. Он был выведен благодаря объединению хромосомных комплексов двух различных родов — пшеницы и ржи. Тритикале по урожайности, питательной ценности и другим качествам превосходит обоих родителей. По устойчивости к неблагоприятным почвенно-климатическим условиям и наиболее опасным болезням она превосходит пшеницу, не уступая ржи.

 

 

20. Автополиплоидия. Получение. Расщепление по генотипу и фенотипу. Значение полиплоидии в селекции и эволюции.

Автополиплоидия (от авто... и полиплоидия), кратное увеличение в клетках организма исходного, характерного для вида набора хромосом. А. имеет значение в онтогенезе растений и животных, а также в филогенезе (видообразовании), главным образом у растений; у животных же — при партеногенезе. Вызывая А. искусственно (высокой температурой, излучениями, химическими соединениями), удалось получить автополиплоидные формы и сорта гречихи, ржи, сахарной свёклы и др.

Значение полиплоидии в селекции. Чрезвычайно ценным источником изменчивости для селекции растений служит полиплоидия, которая сыграла выдающуюся роль в селекции культурных растений. Народная селекция, не зная самого явления полиплоидии, давно использовала ее как источник изменчивости в создании ряда таких культур, как пшеница, овес, хлопчатник, картофель, а также в цветоводстве.

Использование автополиплоидии в селекции. В последние годы успехи теоретических исследований способствовали получению большого количества перспективных полиплоидных форм. Полиплоидизация нарушает скоррелированные физиологобиохимические системы и в ряде случаев обусловливает повышенное содержание ценных химических веществ (например, некоторых важных для фармацевтической промышленности органических соединений у мака опийного) или, наоборот, уменьшает синтез тех или иных нежелательных для человека соединений (например, соединения азота у полиплоидной свеклы). Полиплоиды могут приобретать и другие ценные признаки, например, повышение устойчивости к заболеваниям и др.

Вместе с тем искусственно получаемые автополиплоиды имеют пониженную фертильность. Каждое семя у полиплоида крупнее, чем у исходной формы, но количество семян на растении, как правило, меньше. Причины этого кроются в основном в нарушении мейоза (см. гл. 13). Однако это препятствие преодолимо. Полиплоид не является готовым сортом — он требует дальнейшей тщательной селекции.

В настоящее время хозяйственно ценные полиплоиды получены у ряда сельскохозяйственных культур: сахарной свеклы, проса, мака, льна, редиса, кукурузы, земляники и др

 

21. Спонтанный и индуцированный мутагенез. Закон гомологических рядов в наследственной изменчивости Н. И. Вавилова, его значение для понимания эволюции и практической селекции.

Мутагене́з

[мутация (от лат. mutatio изменение) + греч. gennaō рождать, производить] — возникновение мутаций — внезапных качественных изменений генетической информации. В качестве синонима понятия «мутагенез» часто используют понятие «мутационный процесс».

Различают спонтанные мутации, возникающие с относительно низкой частотой, а также индуцированные мутации, вызываемые воздействием мутагенных агентов (мутагенов). Существует три группы мутагенов: физические, химические и биологические. К физическим мутагенам относят нагревание, различные виды ионизирующих излучений (рентгеновское, α- β- и γ-лучи, нейтроны, мезоны и другие элементарные частицы и ионы высоких энергий), а также ультрафиолетовое и микроволновое излучение. Мутагенное действие характерно для Уф-лучей с длиной волны от 250 до 280 нм. Первичный эффект ионизирующих и ультрафиолетовых излучении заключается в образовании одиночных или двойных разрывов в молекуле ДНК.

Мутагенным действием обладают многие химические соединения самого разнообразного строения. Наибольшую мутагеннуюактивность проявляют различные алкилирующие соединения, а также нитрозосоединения, некоторые антибиотики, обладающие противоопухолевой активностью. Химические мутагены делят на мутагены прямого действия, непосредственно взаимодействующие с генетическим материалом клетки, и мутагены непрямого действия, влияние которых на генетический материал клетки происходит опосредованно, после ряда метаболических превращений. Установлено, что мутагенной активностью обладает несколько тысяч химических соединений. Однако в отличие от ионизирующего и ультрафиолетового излучений для химических мутагенов характерна специфичность действия, зависящая от природы объекта и стадии развития клетки. При взаимодействии химических мутагенов с компонентами наследственных структур (ДНК и белками) возникают первичные повреждения последних. В дальнейшем эти первичные повреждения ведут к возникновению мутаций.

К биологическим мутагенам относят ДНК- и РНК-содержащие вирусы, некоторые полипептиды и белки, например О-стрептолизин и ряд ферментов рестриктаз, а также препараты некоторых ДНК и определенные плазмиды. Механизмы образования мутаций при действии различных биологических факторов не вполне ясны, однако агенты, содержащиеНуклеиновые кислоты, могут вызывать нарушение процессов рекомбинации, что приводит к возникновению мутаций. Действие рестриктаз сводится к «разрезанию» цепей ДНК в месте (локусе) определенной последовательности нуклеотидов, специфичном для каждой рестриктазы.

Для устранения первичных повреждений генетических структур, вызванных мутагенами, в клетке существует ряд систем восстановления, или репарации, генетических повреждений. В настоящее время таких систем насчитывается более десяти. Однако в ходе репарации часть первичных повреждений может остаться и привести к возникновению мутаций.

Н.И. Вавилов открыл закон гомологических рядов в наследственной изменчивости, были выполнены выдающиеся работы по изучению сложного строения гена, установлена роль мутационного процесса в эволюции природных популяций, что позволило объединить закономерности генетики с дарвинизмом. К числу наиболее крупных достижений следует отнести работы Н.И. Вавилова, прежде всего открытие им закона гомологических рядов в наследственной изменчивости, который не толь­ко сыграл огромную роль в изучении эволюции и систематики культурных растений, но и открыл новые пути для селекции возделываемых куль­тур. Н.И. Вавилов разработал также теорию происхождения культурных растений и собрал уникальную коллекцию растений, создав основу для дальнейшей селекционной работы. Надо подчеркнуть, что многочисленные экспедиции Н.И. Вавилова для сбора коллекций вовсе не были чисто ботаническим мероприятием. Это бы­ла работа, без которой не могли дальше раз­виваться полноценно ни фундаментальная био­логия, ни прикладная ботаника и селекция.

Изучение наследственной изменчивости у культурных растений и их предков позволило Н. И. Вавилову сформулировать закон гомологических рядов наследственной изменчивости: «Виды и роды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов. Чем ближе генетически расположены в общей системе роды и виды, тем полнее сходство в рядах их изменчивости. Целые семейства растений в общем характеризуются определенным циклом изменчивости, проходящей через все роды и виды, составляющие семейство». Суть этого закона заключается в том, что у близких по происхождению видов и родов организмов возникают сходные наследственные изменения. Так, у разных видов млекопитающих встречаются формы бесшерстные, длинношерстные, короткопалые и т.д.

Этот закон имеет важное значение для селекции. Создать заново желательный признак очень трудно. Гораздо легче найти разновидность с таким признаком и закрепить его скрещиванием с другими формами. Опираясь на этот закон, Н. И. Вавилову и его сотрудникам удалось найти не известные селекционерам формы многих видов растений, собрать богатейшую коллекцию сортов культурных растений.

 

22. Модификационная изменчивость. Норма реакции генотипа. Значение модификационной изменчивости в эволюции.

Модификационная (фенотипическая) изменчивость — изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется.

Но́рма реа́кции — способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы. Она характеризует долю участия среды в реализации признака и определяет модификационную изменчивость вида. Чем шире норма реакции, тем больше влияние среды и тем меньше влияние генотипа в онтогенезе. Один и тот же ген в разных условиях среды может реализоваться в несколько проявлений признака (фенов). В каждом конкретном онтогенезе из спектра проявлений признака реализуется только один. Аналогично один и тот же генотип в разных условиях среды может реализоваться в целый спектр потенциально возможных фенотипов, но в каждом конкретном онтогенезе реализуется только один фенотип. Под наследственной нормой реакции понимают максимально возможную ширину этого спектра: чем он шире, тем шире норма реакции.

Модификационная изменчивость тесно связана с естественным отбором. Естественный отбор имеет четыре направления, три из которых непосредственно нацелены на выживание организмов с разными формами ненаследственной изменчивости. Это стабилизирующий, движущий и дизруптивный отбор.

Стабилизирующий отбор характеризуется обезвреживанием мутаций и формирования резерва этих мутаций, что обуславливает развитие генотипа при постоянном фенотипе. Вследствие этого организмы со средней нормой реакции доминируют в неизменных условиях существования. Например, у генеративных растений сохраняется форма и размер цветка, которые отвечают форме и размеру насекомого, которое опыляет растение.

Дизруптивный отбор характеризуется раскрытием резервов с обезвреженными мутациями и последующим отбором этих мутаций для формирования новых генотипа и фенотипа, которые подходят под окружающую среду. Вследствие этого выживают организмы с крайней нормой реакции. Например, насекомые с большими крыльями имеют большую устойчивость к порывам ветра, тогда как насекомых того же вида со слабыми крыльями сдувает.

Движущий отбор характеризуется тем же механизмом, что и дизруптивный, однако он нацелен на формирование новой средней нормой реакции. Например, у насекомых появляется стойкость к химикатам.

 

23. Развитие представлений о гене от Г. Менделя, Т. Моргана до наших дней.

ГЕН

(от греч. genos — род, происхождение), наследственный фактор, функционально неделимая единица генетич. материала; участок молекулы ДНК (у нек-рых вирусов РНК), кодирующий первичную структуру полипептида, молекулы транспортной или рибосомальной РНК или взаимодействующий с регуляторным белком. Совокупность Г. данной клетки или организма составляет его генотип. Существование дискретных наследств, факторов в половых клетках было гипотетически постулировано Г. Менделем в 1865, в 1909 B. Иогансен назвал их Г. Дальнейшие представления о Г. связаны с развитием хромосомной теории наследственности. Т. X. Морган и его школа разработали теорию Г., согласно к-рой Г. представляет собой единицу мутации, рекомбинации и функции, т. е. при мутировании Г. изменяется как целое, рекомбинация происходит только между Г., и Г. контролирует элементарную функцию, к-рая может быть определена на основании функционального теста на аллелизм. По мере увеличения разрешающей способности генетич. анализа стало очевидно, что Г. делим и не является единицей мутации и рекомбинации.

Первые эксперименты, доказавшие сложное строение гена у дрозофилы, были выполнены в 20—30-х гг. 20 в. сов. учёными А. С. Серебровским, Н. П. Дубининым и др. Это открытие нашло подтверждение в исследованиях зарубежных авторов, работавших с дрозофилой, а также с низшими грибами, бактериями и др. биол. объектами. В 1953 Дж. Уотсоном и Ф. Криком была раскрыта трёхмерная структура ДНК, что позволило говорить о том, каким образом детали данной структуры определяют биол. функции ДНК в качестве материального носителя наследств. информации. В 60 х гг. амер. исследователь С. Бензер доказал, что Г. бактериофага Т4, развивающегося на кишечной палочке, состоит из линейно расположенных, независимо мутирующих элементов, разделимых рекомбинацией. Исходя из доказанной к тому времени генетич. роли нуклеиновых к-т, С. Бензер показал, что наименьшими мутирующими элементами Г. являются отдельные пары нуклеотидов ДНК.

Существ, роль в теории Г. сыграла концепция «один ген — один фермент», выдвинутая в 40-е гг. Дж. Бидлом и Э. Тейтемом, согласно к-рой каждый Г. определяет структуру какого-либо фермента. После множества уточнений эта концепция сводится к тому, что для каждого типа полипептидных цепей в клетке существует т. н. структурный Г., определяющий чередование аминокислотных остатков в ней. Эта концепция вместе с представлениями о сложной структуре гена и генетич. роли нуклеиновых к-т послужила отправной точкой для установления Ф. Криком и др. осн. параметров генетического кода для белков, а затем его полной расшифровки в 1965 C. Очоа, М. Ниренбергом и др. К этому времени утвердилось представление об универсальности осн. черт строения и функции Г. как сложной линейной структуры участка ДНК, к-рый в результате транскрипции и последующей трансляции определяет первичную структуру полипептидней цепи.

Дальнейшее развитие теории Г. связано, с выявлением отличий в организации генетич. материала у организмов, далёких друг от друга в таксономич. отношении, и с установлением осн. тенденций эволюции Г.

По мере проникновения в мол. структуру генетич. материала всё труднее становится находить в молекулах ДНК границы того, что обозначают понятиями «ген» и «гены» (как наследств, задатки, части генотипа). Это связано с тем, что сигналы таких матричных процессов, как транскрипция (на ДНК) и трансляция (на иРНК), не совпадают как по локализации, так и по сочетаниям нуклеотидов. Наконец, растёт число открываемых генетич. единиц. Наряду со структурными и регуляторными Г., обнаружены участки повторяющихся нуклеотидных последовательностей, функции к-рых неизвестны, мигрирующие нуклеотидные последовательности (мобильные гены). Найдены также т. н. псевдогены у эукариот, к-рые представляют собой копии известных Г., расположенные в других частях генома и лишённые интронов или инактивированные мутациями и поэтому не функционирующие. Все эти сведения расширяют представления о строении генетич. материала и показывают, что теория Г. продолжает развиваться.

 

24. Значение работ по биохимии, генетике микроорганизмов, молекулярной генетике в формировании современного представления о гене.

Большую роль в формировании истинных представлений о природе гена, механизме его действия сыграли работы в области биохимической генетики. Первой экспериментальной работой, которая положила начало биохимической генетике, были исследования А.Гаррода (1899–1910). Он обнаружил, что у больных алкаптонурией в крови и моче появляется красный пигмент – окисленная форма гомогентизиновой кислоты (промежуточный продукт окисления фенилаланина). Он предположил, что из-за генетического дефекта у этих больных отсутствует фермент, необходимый для дальнейшего химического превращения гомогентизиновой кислоты. Тем самым обнаружилась связь между конкретной энзиматической реакцией и наследственным дефектом. В дальнейшем эти исследования пополнялись новыми фактами о связи между деятельностью генов и ферментов. Однако биохимическая генетика как наука оформилась лишь с работы Дж.Бидла и Е.Татума, которые в 1940 г. выдвинули тезис «один ген – один фермент». Из него следовало, что каждый ген ответствен за появление в клетке одного определенного фермента и что действие генов опосредовано ферментами. По мере изучения наследственности на субклеточном и молекулярном уровне углублялось и уточнялось представление о гене. Если в опытах по наследованию различных признаков ген постулировался как элементарная неделимая единица наследственности, а в свете данных цитологии его рассматривали как изолированный участок хромосомы, то на молекулярном уровне ген-входящий в состав хромосомы участок молекулы ДНК, способный к самовоспроизведению и имеющий специфическую структуру, в которой закодирована программа развития одного или нескольких признаков организма. В 50-х гг. на микроорганизмах (американский генетик С. Бензер)было показано, что каждый ген состоит из ряда различных участков, которые могут мутировать и между которыми может происходить кроссинговер. Так подтвердилось представление о сложной структуре гена, развивавшееся еще в 30-х гг. А. C. Серебровским и Н. П. Дубининым на основе данных генетического анализа. В 50-е гг. биохимикам удалось изучить свойства спец. фермента (его назвали ДНК-полимеразой), присутствующего во всех клетках и осуществляющего удвоение (репликацию) молекул ДНК. В 70-х гг. было установлено, что процесс репликации — многостадийный процесс и что в синтезе новых молекул ДНК участвует несколько типов ДНК-полимераз и ряд других ферментов. Важнейшим достижением молекулярной генетики явилась расшифровка структуры хромосомной ДНК. В 1968 г. было установлено, что имеется два типа участков хромосомной ДНК, отличающихся друг от друга последовательностью расположения нуклеотидов (основных звеньев ДНК). Каждый участок первого типа состоит из своеобразной, присущей только ему последовательности расположения нуклеотидов. Такие последовательности были названы уникальными. Участки второго типа содержали различное количество повторяющихся последовательностей нуклеотидов, к-рые были названы повторами. В 1973— 1975 гг. было установлено, что в ДНК участки повторов чередуются с участками уникальных последовательностей т. о., что каждая уникальная зона отделена от другой отрезками повторов. Оказалось, что повторы бывают двух видов — короткие (содержащие в среднем ок. 300 нуклеотидных пар) и длинные (до 5000 нуклеотидных пар). Число коротких повторов в ДНК в несколько раз больше, чем длинных. В последнее время высказано предположение, что длинные повторы равномерно распределены по ДНК. Роль повторов пока не выяснена, хотя были высказаны предположения, что они играют роль в упаковке ДНК в хромосоме, в процессах транскрипции и трансляции, а также в осуществлении обмена генами между хромосомами. Благодаря развитию молекулярной генетики было открыто универсальное свойство живой материи, ранее неизвестное ученым,— способность восстанавливать повреждения в молекулах ДНК, возникающие под влиянием различных неблагоприятных воздействий (процесс репарации — см. Репарация генетическая). Высказываются достаточно обоснованные надежды на возможность использования метода М. г. для выделения генов из клеток, синтеза искусственных генов и соединения их с генетическим аппаратом организмов с целью устранения различных наследственных дефектов

 

25. Человек как объект генетических исследований. Генеалогический метод изучения наследственности человека. Типы наследования признаков.

Генетика человека изучает явления наследственности и изменчивости в популяциях людей, особенности наследования нормальных и патологических признаков, влияние генетической конституции на возникновение и развитие заболеваний.

Задачи медицинской генетики:

- Выявление причин возникновения наследственных болезней (генные, хромосомные и геномные мутации).

- Изучение характера их наследования в семьях.

- Изучения распространения наследственных болезней в популяциях человека.

 

Особенности человека как объекта генетических исследований

- У человека не может быть произведено искусственно направленного скрещивания в интересах исследователя.

- Низкая плодовитость делает невозможным применение статистического подхода при оценке немногочисленного потомства одной пары родителей.

- Редкая смена поколений (через 25 лет), при значительной продолжительности жизни дает возможность одному исследователю наблюдать не более 3-4 последовательных поколений.

- Наличие в геноме большого числа групп сцепления генов (23 у женщин, 24 у мужчин).

- Высокая степень фенотипического полиморфизма, связанного с влиянием среды.

- Хорошая изученность фенотипа

 

Методы генетики

  1. Гибридологический
  2. Цитологический
  3. Цитогенетический
  4. Биохимический
  5. Математический
  6. Генеалогический
  7. Близнецовый
  8. Онтогенетический
  9. Метод приемных детей

 

Генеалогический метод.

Этапы генеалогического метода

1.Сбор сведений о наличии анализируемого признака у родственников пробанда и составление легенды.(проводится с целью выявления наличия или отсутствия признака (болезни). Методы: Личное обследование. Анкетирование.)

2.Графическое изображение родословной – семейной схемы распределения признака (болезни) среди родственников пробанда.

3.Анализ родословной

 

Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный, рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

При аутосомном наследовании признак характеризуется равной вероятностью проявления у лиц обоих полов. Различают аутосомно-доминантное и аутосомно-рецессивное наследование.

При аутосомно-доминантном наследовании доминантный аллель реализуется в признак как в гомозиготном, так и в гетерозиготном состоянии. При наличии хотя бы у одного родителя доминантного признака последний с разной вероятностью проявляется во всех последующих поколениях. Однако для доминантных мутаций характерна низкая пенетрантность. В ряде случаев это создает определенные трудности для определения типа наследования.

При аутосомно-рецессивном наследовании рецессивный аллель реализуется в признак в гомозиготном состоянии. Рецессивные заболевания у детей встречаются чаще при браках между фенотипически нормальными гетерозиготными родителями. У гетерозиготных родителей (Аа х Аа) вероятность рождения больных детей (аа) составит 25%, такой же процент (25%) буду здоровы (АА), остальные 50% (Аа) будут также здоровы, но окажутся гетерозиготными носителями рецессивного аллеля. В родословной при аутосомно-рецессивном наследовании заболевание может проявляться через одно или несколько поколений.

Интересно отметить, что частота появления рецессивного потомства значительно повышается при близкородственных браках, так как концентрация гетерозиготного носительства у родственников значительно превышает таковую в общей массе населения.

Сцепленное с полом, наследование характеризуется, как правило, неравной частотой встречаемости признака у индивидуумов разного пола и зависит от локализации соответствующего гена в Х- или Y-хромосоме. В X- и Y-хромосомах человека имеются гомологичные участки, содержащие парные гены. Гены, локализованные в гомологичных участках, наследуются так же, как и любые другие гены, расположенные в аутосомах. По-видимому, негомологичные гены имеются и в Y-хромосоме. Они передаются от отца к сыну и
проявляются только у мужчин (голандрический тип наследования).

У человека в Y-хромосоме находится ген, обусловливающий дифференцировку пола. В Х-хромосоме имеется два негомологичных участка, содержащих около 150 генов, которым нет аллельных в Y-хромосоме. Поэтому вероятность проявления рецессивного аллеля у мальчиков более высока, чем у девочек. По генам, локализованным в половых хромосомах, женщина может быть гомозиготной или гетерозиготной. Мужчина, имеющий только одну Х-хромосому, будет гемизиготным по генам, которым нет аллелей в Y-хромосоме.

Наследование, сцепленное с Х-хромосомой, может быть доминантным и рецессивным (чаще рецессивным). Рассмотрим Х - сцепленное рецессивное наследование на примере такого заболевания человека, как гемофилия (нарушение свертывания крови). Известный всему мипу пример: носитель гемофилии королева Виктория была гетерозиготной и передала мутантный ген сыну Леопольду и двум дочерям. Эта болезнь проникла в ряд королевских домов Европы и попала в Россию.

 

26. Цитогенетический метод изучения генетики человека. Кариотип человека в норме и патологии. Хромосомные болезни человека и методы их диагностики.

Цитогенетический метод( изучает изменение строения и количества хромосом.)

Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями. Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.
В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом: 22 пар аутосом и одной пары половых хромосом (XX? у женщин, XY? у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека. Цитологический контроль необходим для диагностики хромосомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови? хроническому миелолейкозу.

При цитологических исследованиях интерфазных ядер соматических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.
Выявление многих наследственных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.

Кариотип – совокупность всех характеристик хромосом, таких как структура, расположение, последовательность, форма, количество и размер.

У каждого вида живых организмов существует свой кариотип, состав которого влияет на обеспечение нормальной жизнедеятельности

Анализ кариотипа происходит на стадии митоза хромосом, т.е. при делении клеток, когда меняются их размеры и, как следствие, именно в этот момент они доступны для распознавания.

Исследование всех элементов кариотипа человека производится при помощи метода специальной окраски и последующего изучения хромосом в световом микроскопе. Данный метод помогает увидеть размеры и формы хромосом, их структуру, а также расположение первичных и вторичных перетяжек и неоднородных участков на них.
Изображение, видимое в микроскопе, периодически фотографируют, чтобы зафиксировать изменения, затем по совокупности изображений составляют конкретную картину. Эта информация позволяет произвести распределение хромосом на определенные группы. В итоге весь диплоидный набор хромосом человека составляют 46 элементов, включающих в себя 22 пары аутосом и одну пару половых хромосом - XX - у женщин (две большие хромосомы) и XY- у мужчин (одна большая и одна маленькая хромосомы). Это и есть нормальный кариотип, отклонение от которого и провоцирует проявления уродства, пороков развития, бесплодия и невынашивания беременности.
Вариантов отклонений от нормы множество, ими могут проявляться как изменения в порядке следования хромосом, их составе, структуре, размерах и форме. Нарушение нормального кариотипа происходит еще на самой ранней стадии зарождения и развития эмбриона или же в половых клетках мужчины и женщины. Для анализа нарушений кариотипа необходимо сдать кровь из вены, которая исследуется вышеописанным способом. Такой анализ выполняется ориентировочно в течение нескольких недель.
На сегодняшний день выявлены и обозначены аномалии такие как:
– Болезнь Дауна
– Синдром Эдвардса
– Синдром кошачьего крика
– Синдром Патау
– Синдром Клайнфельтера
– Синдром Шерешевского – Тернера
– Полисомии по X хромосоме.

Для визуального описания изменений хромосом была разработана международная система обозначений. Принято, что первым записывается количество хромосом (цифры), затем половые хромосомы ХХ или ХY, затем указываются особенности. Особенности - это, как правило, длина плеча. Длинное плечо обозначают буквой q, короткое - буквой p, а также по ситуации используют дополнительные символы для указания иных отклонений. Например, запись болезни Дауна будет выглядеть так: 47,ХХ,+21; 47,ХY,+21 (трисомия по 21 хромосоме), а Синдром кошачьего крика так: 46,XX, 5р- (делеция короткого плеча пятой хромосомы)
Причины нарушений кариотипа.
Одной из причин является нарушение сперматогенеза, некоторые из нарушенных сперматозоидов все же участвуют в оплодотворении яйцеклетки и, следовательно, могут являться причиной формирования эмбриона с нарушенным кариотипом.
Неотъемлемым неблагоприятным фактором является плохая экология, провоцирующая хромосомные мутации, а значит, негативно отражающаяся на изменении кариотипа человека. Важно отметить, что эти нарушения передаются по наследству.


Дата добавления: 2015-10-19 | Просмотры: 789 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.017 сек.)