АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Участие комплекса гольджи в построении клеточных мембран,цитолеммы,лизосом

Прочитайте:
  1. Анатомо-физиологические особенности детей и подростков школьного возраста(11-14), их учёт в построении режима дня, содержании и форме проведении занятий ФК.
  2. Антенатальная охрана плода в условиях акушерско-педиатрического-терапевтического комплекса (АТПК). Группы риска в антенатальном и неонатальном периодах.
  3. В механизме передачи которых принимает участие вода (по классификации ВОЗ)
  4. в механизме передачи которых принимает участие почва
  5. ВНЕКЛЕТОЧНЫХ ЭЛЕКТРОДОВ ?
  6. Во время фазы исцеления предшествующая утрата тканей возмещается за счет их роста, в идеале – с участием специальных бактерий, задействованных в этом процессе.
  7. Вопрос 2. Плазмолемма: строение, химический состав, функции. Виды межклеточных соединений, их структурно-функциональная характеристика. Липосомы.
  8. Входя в состав гликолипидов и гликопротеидов, участвуют в формировании клеточных мембран, образуя, например, такой важный элемент клеточной структуры как гликокалликс.
  9. ЗаявкА на участие в конференции
  10. Иммунными комплексами

Комплекс Гольджи (диктиосомы) – это одномембранные органеллы, открытые в 1889 году итальянским ученым К.Гольджи в животных клетках. В растительных клетках эти органеллы обнаружены лишь с помощью электронного микроскопа.
Комплекс Гольджи представляет собой стопку из 5-10 плоских цистерн, по краям которых отходят ветвящиеся трубочки и мелкие пузырьки. Он входит в состав системы мембран: наружная мембрана ядерной оболочки – эндоплазматическая сеть – комплекс Гольджи – наружная клеточная мембрана. В этой системе происходит синтез и перенос различных соединений, а также веществ, выделяемых клеткой в виде секрета или отбросов.
Кроме того, комплекс Гольджи принимает участие в образовании лизосом, вакуолей, в накоплении углеводов, в построении клеточной стенки (у растений). Так, при образовании пищеварительных ферментов их молекулы не входят в цитоплазму, а погружаются в канал эндоплазматической сети, по которому доставляются в комплекс Гольджи, там упаковываются в пузырек и отделяются в виде лизосом.

Лизосомы
Лизосомы покрыты элементарной мембраной и содержат около 30 гидролитических ферментов, способных расщеплять белки, нуклеиновые кислоты, жиры и углеводы. Образование лизосом происходит в комплексе Гольджи. Если в цитоплазму клетки попадают пищевые вещества или микроорганизмы, ферменты лизосом принимают участие в их переваривании. При повреждении мембран лизосом ферменты, содержащиеся в них, могут разрушать структуры самой клетки и временные органы эмбрионов и личинок, например хвост и жабры в процессе развития головастиков лягушек. Продукты лизиса через мембрану лизосом поступают в цитоплазму и включаются в дальнейший обмен веществ.

22 –Лизосомы,классификация строение функции

Лизосомы наиболее мелкие органеллы цитоплазмы (0,2–0,4 мкм) и поэтому открытые (де Дюв, 1949 г.) только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты. Маркерным ферментом лизосом является кислая фосфатаза.
Функция лизосом обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ.
Классификация лизосом:
· первичные лизосомыэлектронноплотные тельца;
· вторичные лизосомыфаголизосомы, в том числе аутофаголизосомы;
· третичные лизосомы или остаточные тельца.
Истинными лизосомами являются мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе.
Пищеварительная функция лизосом начинается только после слияния лизосомы с фагосомой, то есть фагоцитированным веществом, окруженным билипидной мембраной. При этом образуется единый пузырекфаголизосома, в которой смешивается фагоцитированный материал и ферменты лизосомы. После этого начинается расщепление (гидролиз) биополимерных соединений фагоцитированного материала на мономерные молекулы (аминокислоты, моносахара и так далее). Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой, то есть используются или для образования энергии или на построение биополимерных структур. Но не всегда фагоцитированные вещества расщепляются полностью.
Дальнейшая судьба оставшихся веществ может быть различной. Некоторые из них могут быть выведены из клетки посредством экзоцитоза, по механизму обратному фагоцитозу. Некоторые вещества (прежде всего липидной природы) не расщепляются лизосомальными гидролазами, а накапливаются и уплотняются в фаголизосоме. Такие образования называются третичными лизосомами или остаточными тельцами. В процессе фагоцитоза и экзоцитоза осуществляется регуляция мембран в клетке: в процессе фагоцитоза часть плазмолеммы отшнуровывается и образует оболочку фагосомы, в процессе экзоцитоза эта оболочка снова встраивается в плазмолемму. Установлено, что некоторые клетки в течение часа полностью обновляют плазмолемму.
Кроме рассмотренного механизма внутриклеточного расщепления фагоцитированных экзогенных веществ, таким же способом разрушаются эндогенные биополимеры – поврежденные или устаревшие собственные структурные элементы цитоплазмы. Вначале такие органеллы или целые участки цитоплазмы окружаются билипидной мембраной и образуется вакуоль аутофаголизосома, в которой осуществляется гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.
Следует отметить, что все клетки содержат в цитоплазме лизосомы, но в различном количестве. Имеются специализированные клетки (макрофаги), в цитоплазме которых содержится очень много первичных и вторичных лизосом. Такие клетки выполняют защитные функции в тканях и называются клетками-чистильщиками, так как они специализированы на поглощение большого числа экзогенных частиц (бактерий, вирусов), а также распавшихся собственных тканей.
Пероксисомы – микротельца цитоплазмы (0,1–1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.

23—Вакуоли клеток растения,функции и значения для клетки

 

Вакуоли - полости в протопласте эукариотических клеток. У растений вакуоли - производные эндоплазматической сети, ограниченные мембраной - тонопластом и заполненные водянистым содержимым - клеточным соком. По- видимому, существенную роль в образовании вакуолей имеет деятельность аппарата Гольджи.

В молодых делящихся растительных клетках вакуоли представляют систему канальцев и пузырьков (провакуоли), по мере роста клеток они увеличиваются, а затем сливаются в одну большую центральную вакуоль. Она занимает от 70 до 90% объема клетки, в то время как протопласт располагается в виде тонкого постенного слоя. В основном увеличение размеров клетки происходит за счет роста вакуоли. В результате этого возникает тургорное давление и поддерживается упругость клеток и тканей.

Содержимое вакуоли - клеточный сок - представляет собой слабокислый (рН 2-5) водный раствор различных органических и неорганических веществ (в незрелых плодах или в зрелых плодах лимона клеточный сок имеет сильнокислую реакцию). По химическому составу и консистенции клеточный сок существенно отличается от протопласта. Эти различия связаны с избирательной проницаемостью тонопласта, выполняющего барьерную функцию. Большинство органических веществ, содержащихся в клеточном соке, относится к группе эргастических продуктов метаболизма протопласта. В зависимости от потребностей клетки они могут накапливаться в вакуоли в значительных количествах либо полностью исчезать. Наиболее обычны различные углеводы, играющие роль запасных энергетических веществ, а также органические кислоты. Вакуоли семян нередко содержат и белки-протеины. Растительные вакуоли часто служат местом концентрации разнообразных вторичных метаболитов - полифенольных соединений: флавоноидов, антоцианов, таннидов и азотсодержащих веществ - алкалоидов. В клеточном соке растворены также многие неорганические соединения.

Функции вакуолей многообразны. Они формируют внутреннюю водную среду клетки, и с их помощью осуществляется регуляция водно-солевого обмена. В этом плане очень важна роль тонопласта, участвующего в активном транспорте и накоплении в вакуолях некоторых ионов.

Другая важнейшая роль вакуолей состоит в поддержании тургорного гидростатического давления внутриклеточной жидкости в клетке.

Наконец, третья их функция - накопление запасных веществ и "захоронение" отбросов, т.е. конечных продуктов метаболизма клетки. Иногда вакуоли разрушают токсичные или ненужные клетке вещества. Обычно это выполняется специальными небольшими вакуолями, содержащими соответствующие ферменты. Такие вакуоли получили название лизосомных.

Тургорное давление в растительных клетках способствует поддержанию формы неодревесневших частей растений. Оно служит также одним из факторов роста, обеспечивая рост клеток растяжением. Потеря тургора вызывает увядание растений. Тургорное давление связано с избирательной проницаемостью тонопласта для воды и явлением осмоса. Осмос - это односторонняя диффузия воды через полупроницаемую перегородку в сторону водного раствора солей большей концентрации. Поступающая в клеточный сок вода оказывает давление на цитоплазму, а через нее - на стенку клетки, вызывая упругое ее состояние, т.е. обеспечивая тургор. Недостаток воды в растении и тем самым в отдельной клетке ведет к плазмолизу, т.е. к сокращению объема вакуоли и отделению протопластов от оболочки. Плазмолиз может быть вызван искусственно при погружении клетки в гипертонический раствор какой-либо соли или сахара. Плазмолиз обычно обратим и может служить показателем живого состояния протопласта.

24—Характеристика двумембранных органелл клетки

Двумембранные органеллы. К двумебранным органеллам относятся пластиды и митохондрии. Пластиды —характерные органеллы клеток автотрофных эукариотических организмов. Их окраска, форма и размеры весьма разнообразны. Различают хло-ропласты, хромопласты и лейкопласты.

Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента — хлорофилла. Хлоропласты содержат также вспомогательные пигменты — каротиноиды (оранжевого цвета). По форме хлоропласты — это овальные линзовидные тельца размером (5—10) х (2—4) мкм. В одной клетке листа может находиться 15—20 и более хлоропластов, а у некоторых водорослей — лишь 1 -2 гигантских хлоропласта (хроматофора) различной формы.

Хлоропласты ограничены двумя мембранами — наружной и внутренней

Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа.

Внутренняя мембрана хлоропласта образует впячивания внутрь стромы — тилакоиды, или ламеллы, которые имеют форму уплощенных мешочков (цистерн). Несколько таких тилакои-дов, лежащих друг над другом, образуют грану, и в этом случае они называются тил акоидами граны. Именно в мембранах тила-коидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света.

Хлоропласты в клетке осуществляют процесс фотосинтеза.

Лейкопласты — мелкие бесцветные пластиды различной формы. Они бывают шаровидными, эллипсоидными, гантелевид-ными, чашевидными и т. д. По сравнению с хлоропластами у них слабо развита внутренняя мембранная система.

Лейкопласты в основном встречаются в клетках органов, скрытых от солнечного света (корней, корневищ, клубней, семян). Они осуществляют вторичный синтез и накопление запасных питательных веществ — крахмала, реже жиров и белков.

Хромопласты отличаются от других пластид своеобразной формой (дисковидной, зубчатой, серповидной, треугольной, ром-

бической и др.) и окраской (оранжевые, желтые, красные). Хромопласты лишены хлорофилла и поэтому не способны к фотосинтезу. Внутренняя мембранная структура их слабо выражена.

Хромопласты присутствуют в клетках лепестков многих растений (лютиков, калужниц, нарциссов, одуванчиков и др.), зрелых плодов (томаты, рябина, ландыш, шиповник) и корнеплодов (морковь, свекла), а также листьев в осеннюю пору. Яркий цвет этих органов обусловлен различными пигментами, относящимися к группе каргиноидов, которые сосредоточены в хромопластах.

Все типы пластид генетически родственны друг другу, и одни их виды могут превращаться в другие:

Таким образом, весь процесс взаимопревращений пластид можно представить в виде ряда изменений, идущих в одном направлении — от пропластид до хромопластов.

Митохондрии—неотъемлемые компоненты всех эукариоти-ческих клеток. Они представляют собой гранулярные или нитепо-добные структуры толщиной 0,5 мкм и длиной до 7—10 мкм.

Митохондрии ограничены двумя мембранами — наружной и внутренней (рис. 1.9). Между внешней и внутренней мембранами имеется так называемое перимитохондриалъное пространство, которое является местом скопления ионов водорода Н+ Наружная митохондриальная мембрана отделяет ее от гиало-плазмы. Внутренняя мембрана образует множество впячиваний внутрь митохондрий — так называемых крист. На мембране крист или внутри нее располагаются ферменты, в том числе переносчики электронов и ионов водорода Н+, которые участвуют в кислородном дыхании. Наружная мембрана отличается высокой проницаемостью, и многие соединения легко проходят через нее. Внутренняя мембрана менее проницаема. Ограниченное ею внутреннее содержимое митохондрии {матрикс) по составу близко к цитоплазме. Матрикс содержит различные белки, в том числе ферменты, ДНК (кольцевая молекула), все типы РНК, аминокислоты, рибосомы, ряд витаминов. ДНК обеспечивает некоторую генетическую автономность митохондрий, хотя в целом их работа координируется ДНК ядра.

 

В митохондриях осуществляется кислородный этап клеточного дыхания.

25—Строение и функции митохондрий,дыхание клеток

Митохондрии — органеллы энергообеспечения метаболических процесов в клетке. Размеры их варьируют от 0,5 до 5-7 мкм, количество в клетке составляет от 50 до 1000 и более. В гиалоплазме митохондрии распределены обычно диффузно, однако в специализированных клетках сосредоточены в тех участках, где имеется наибольшая потребность в энергии. Например, в мышечных клетках и симпластах большие количества митохондрий сосредоточены вдоль рабочих элементов — сократительных фибрилл. В клетках, функции которых сопряжены с особо высокими энергозатратами, митохондрии образуют множественные контакты, объединяясь в сеть, или кластеры (кардиомиоциты и симпласты скелетной мышечной ткани).

В клетке митохондрии выполняют функцию дыхания. Клеточное дыхание — это последовательность реакций, с помощью которых клетка использует энергию связей органических молекул для синтеза макроэргических соединений типа АТФ. Образующиеся внутри митохондрии молекулы АТФ переносятся наружу, обмениваясь на молекулы АДФ, находящиеся вне митохондрии. В живой клетке митохондрии могут передвигаться с помощью элементов цитоскелета.

На ультрамикроскопическом уровне стенка митохондрии состоит из двух мембран — наружной и внутренней. Наружная мембрана имеет относительно ровную поверхность, внутренняя — образует направленные в центр складки, или кристы. Между наружной и внутренней мембранами возникает неширокое (около 15 нм) пространство, которое называется наружной камерой митохондрии; внутренняя мембрана ограничивает внутреннюю камеру. Содержимое наружной и внутренней камер митохондрии различно, и так же, как и сами мембраны, существенно отличается не только по рельефу поверхности, но и по ряду биохимических и функциональных признаков. Наружная мембрана по химическому составу и свойствам близка к другим внутриклеточным мембранам и плазмолемме.

Ее характеризует высокая проницаемость, благодаря наличию гидрофильных белковых каналов. Эта мембрана имеет в своем составе рецепторные комплексы, распознающие и связывающие вещества, поступающие в митохондрию. Ферментный спектр наружной мембраны небогат: это ферменты метаболизма жирных кислот, фосфолипидов, липидов и др. Главной функцией наружной мембраны митохондрии является отграничение органеллы от гиалоплазмы и транспорт необходимых для осуществления клеточного дыхания субстратов.

Внутренняя мембрана митохондрий в большинстве клеток тканей различных органов формирует кристы в виде пластин (ламеллярные кристы), что значительно увеличивает площадь поверхности внутренней мембраны. В последней 20-25 % всех белковых молекул составляют ферменты дыхательной цепи и окислительного фосфорилирования. В эндокринных клетках надпочечников и половых желез митохондрии участвуют в синтезе стероидных гормонов. В этих клетках митохондрии имеют кристы в виде трубочек (тубул), упорядоченно расположенных в определенном направлении. Поэтому кристы митохондрий в стероидпродуцирующих клетках названных органов именуются тубулярными.

Матрикс митохондрии, или содержимое внутренней камеры, представляет собой гелеобразную структуру, содержащую около 50 % белков. Осмиофильные тельца, описанные при электронной микроскопии, — это резервы кальция. Матрикс содержит ферменты цикла лимонной кислоты, катализирующие окисление жирных кислот, синтез рибосом, ферменты, участвующие в синтезе РНК и ДНК. Общее число ферментов превышает 40.

Помимо ферментов, матрикс митохондрии содержит митохондриальную ДНК (митДНК) и митохондриальные рибосомы. Молекула митДНК имеет кольцевидную форму. Возможности внутримитохондриального белкового синтеза ограничены — здесь синтезируются транспортные белки митохондриальных мембран и некоторые ферментные белки, участвующие в фосфорилировании АДФ. Все остальные белки митохондрии кодируются ядерной ДНК, и их синтез осуществляется в гиалоплазме, и в дальнейшем они транспортируются в митохондрию. Жизненный цикл митохондрий в клетке короткий, поэтому природа наделила их двойственной системой воспроизводства — помимо деления материнской митохондрии, возможно образование нескольких дочерних органелл путем почкования

26—Пластиды,строение,разновидности,функции

Пластиды. Это органеллы, характерные исключительно для рас­тительных клеток. В них происходит первичный и вторичный син­тез углеводов. Форма, размеры, строение и функции пластид раз­личны. По окраске (наличию или отсутствию пигментов) различа-


ют три типа пластид: зеленые хлоропласты, желто-оранжевые и красные хромопласты, бесцветные лейкопласты. Возможно взаим­ное превращение пластид. Обычно в клетке встречается только один тип пластид. Пластиды развиваются из пропластид — сфери­ческих недифференцированных телец, которые содержатся в рас­тущих частях растений (в клетках зародыша, образовательной тка­ни). Они окружены двойной мембраной и заполнены матриксом. В матриксе имеются кольцевая ДНК и рибосомы прокариотичес-кого типа. Пропластиды способны делиться. Из них на свету (в ли­стьях, незрелых плодах, наружных частях стебля) формируются хлоропласты, в глубине стебля и в подземных органах ~ бесцвет­ные лейкопласты. Из хлоропластов и иногда лейкопластов образу­ются хромопласты.

Хлоропласты — это органеллы фотосинтеза. Хлоропласты высших растений имеют примерно одинаковую форму двояковы­пуклой линзы. Размеры хлоропластов 5... 10 мкм в длину при диа­метре 2...4мкм. Число хлоропластов в клетках высших растений 15...50. Хлоропласты водорослей, называемые хроматофорами, значительно разнообразнее по форме, структуре, набору пигментов (см. гл. 10). В клетках высших растений хлоропласты расположены в постенном слое цитоплазмы таким образом, что одна из плоских сторон обращена к освещенной стенке клетки. Положение хлоро­пластов меняется в зависимости от освещенности: при прямом сол­нечном свете они отходят к боковым стенкам.

Хлоропласт содержит воды до 75 %, белки, липиды, нуклеино­вые кислоты, ферменты и пигменты: хлорофиллы (5...10% сухой массы) и каротиноиды (1...2 %). Молекула хлорофилла состоит из головки — сложного углеродно-азотного (тетрапирольного) коль­ца, в центре которого находится атом магния, и длинного хвоста — цепи из двадцатиатомиого спирта фитола. Головки молекул хлоро­филла способны связываться с белками, а их фитольные хвосты ра­створимы в жирах.

27—Происхождение митохондрий и пластид.Относительная автономия

В результате изучения последовательности оснований в митохондриальной ДНК были получены весьма убедительные доводы в пользу того, что прежде митохондрии были аэробными бактериями (прокариотами), родственными риккетсиям, поселившимися некогда в предковой эукариотической клетке и «научившимися» жить в ней в качестве симбионтов. Теперь митохондрии имеются почти во всех эукариотических клетках, размножаться вне клетки они уже не способны.

Существуют свидетельства того, что первоначально эндосимбиотические предки митохондрий не могли ни импортировать белки, ни экспортировать АТФ [4]. Вероятно, первоначально они получали от клетки-хозяина пируват, а выгода для хозяина состояла в обезвреживании аэробными симбионтами токсичного для нуклеоцитоплазмы кислорода.

Подобно митохондриям, пластиды также имеют свои собственные прокариотические ДНК и рибосомы. По-видимому, хлоропласты произошли от фотосинтезирующих бактерий, поселившихся в свое время в гетеротрофных клетках протистов, превратив их в автотрофные водоросли.

28—Симбиотическая теория происхождения митохондрий и пластид

согласно этой теории, митохондрии и хлоропласты произошли от симбиотических прокариотических организмов, захваченных протоэукариотом в результате фагоцитоза. Этот протоэукариот, о видимому, представлял собой амебоидный гетеротрофный, анаэробный организм с уже развитыми эукариотическими признаками. С помощью теории симбиогенеза были предсказаны и/или объяснены многие признаки митохондрий и хлоропластов.

29—Процесс фотосинтеза,его приуроченность к организации хлоропластов

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО2 + 6Н2О + Qсвета → С6Н12О6 + 6О2.

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.


Дата добавления: 2015-12-15 | Просмотры: 1513 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.008 сек.)