АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Электрические сигналы

Прочитайте:
  1. Биоэлектрические процессы в возбудимых тканях. Мембранно-ионная теория происхождения биоэлектричества.
  2. Биоэлектрические процессы в растениях.
  3. Биоэлектрические процессы. Потенциал действия. Его основные части. Механизм возникновения (на примере ПД скелетной мускулатуры).
  4. Входные сигналы
  5. Механизм звуковосприятия (теория места и теория залпов). Электрические явления в улитке.
  6. ПРЕОБРАЗОВАНИЕ ЗВУКОВЫХ КОЛЕБАНИЙ В ЭЛЕКТРИЧЕСКИЕ ПРОИСХОДИТ В
  7. Рецепторная функция - преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).
  8. Свойства импульсов возбуждения в центральной нервной системе. Биоэлектрические явления
  9. Структура и функции сетчатки глаза. Фотохимические и электрические явления в сетчатке. Роль движения глаза в зрении.

Ещё Рамон-Кахал сформулировал два принципа, которые легли в основу нейронной теории и сохранили своё значение до настоящего времени:

1. Принцип динамической поляризации. Он означает, что электрический сигнал распространяется по нейрону только в одном и предсказуемом направлении.

2. Принцип специфичности соединений. В соответствии с этим принципом нейроны вступают в контакты не беспорядочно, но только с определёнными клетками-мишенями, причём цитоплазма контактирующих клеток не соединяется и между ними всегда сохраняется синаптическая щель.

Современный вариант нейронной теории связывает определённые части нервной клетки с характером возникающих в них электрических сигналов. В типичном нейроне есть четыре определяемые морфологически области: дендриты, сома, аксон и пресинаптическое окончание аксона. При возбуждении нейрона в нём последовательно появляется четыре разновидности электрических сигналов: входной, объединённый, проводящийся и выходной (рис. 3.3). Каждый из этих сигналов возникает только в определённой морфологической области.

Чтобы понять различия между этими сигналами, надо иметь некоторое представление о природе нервных импульсов. С наружной и внутренней стороны плазматической мембраны нейрона содержатся разные электрические заряды: с наружной стороны положительные, с внутренней – отрицательные. Разность между ними называется мембранным потенциалом покоя. Если считать наружный заряд равным нулю, то разность зарядов между наружной и внутренней поверхностями у большинства нейронов оказывается близкой к -65 мВ, хотя она и может у отдельных клеток варьировать от -40 до -80 мВ.

Возникновение этой разности зарядов обусловлено неодинаковым распределением ионов калия, натрия и хлора внутри клетки и снаружи её, а также большей проницаемостью покоящейся клеточной мембраны лишь для ионов калия (см. главу 4).

У возбудимых клеток, к числу которых принадлежат нервные и мышечные, потенциал покоя способен сильно изменяться и эта способность является основой для возникновения электрических сигналов. Уменьшение потенциала покоя, например, с -65 до -60 мВ, называется деполяризацией, а увеличение, например, с -65 до -70 мВ, – гиперполяризацией.

Если деполяризация достигнет некоторого критического уровня, например -55 мВ, то проницаемость мембраны для ионов натрия на короткое время становится максимальной, они устремляются в клетку и в связи с этим трансмембранная разность потенциалов стремительно уменьшается до 0, а затем приобретает положительное значение. Это обстоятельство приводит к закрытию натриевых каналов и стремительному выходу из клетки ионов калия через предназначенные только для них каналы: в результате восстанавливается первоначальная величина мембранного потенциала. Эти быстро происходящие изменения мембранного потенциала называются потенциалом действия. Потенциал действия является проводящимся электрическим сигналом, он быстро распространяется по мембране аксона до самого его окончания, причём нигде не меняет свою амплитуду.

Кроме потенциалов действия в нервной клетке, вследствие изменения её мембранной проницаемости, могут возникать местные или локальные сигналы: рецепторный потенциал и постсинаптический потенциал. Их амплитуда значительно меньше, чем у потенциала действия, кроме того, она существенно уменьшается при распространении сигнала. По этой причине местные потенциалы и не могут распространяться по мембране далеко от места своего возникновения.


Дата добавления: 2015-12-15 | Просмотры: 567 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)