АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Проведение потенциала действия

Прочитайте:
  1. F42.2 Смешанные навязчивые мысли и действия
  2. I. Неопиоидные (ненаркотические) анальгетики центрального действия (производные парааминофенола)
  3. II. Препараты из различных фармакологических групп с анальгетическим компонентом действия
  4. II. Снотворные средства с наркотическим типом действия
  5. А — нормальная плетизмограмма; б — плетизмограмма при воздействии холода; в— плетизмограмма при воздействии тепла; 1— начало воздействия; 2— конец воздействия.
  6. Алгоритм действия
  7. Алгоритм действия
  8. Аллелопатические взаимодействия в ценозе.
  9. Антиагреганты. Антикоагулянты прямого и непрямого действия. Действие и применение. Осложнения.
  10. Антибиотики группы левомицетина. Особенности действия. Показания к применению. Побочные эффекты и их предупреждение. Противопоказания.

Как уже говорилось, амплитуда входных сигналов пропорциональна силе подействовавшего стимула или количеству выделившегося в синапсе нейромедиатора – такие сигналы называют градуальными. Их длительность определяется длительностью стимула или присутствия медиатора в синаптической щели. Амплитуда и длительность потенциала действия от этих факторов не зависят: оба этих параметра всецело определяются свойствами самой клетки. Стало быть, любая комбинация входных сигналов, любой вариант суммации, при единственном условии деполяризации мембраны до критического значения, вызывает один и тот же стандартный образец потенциала действия в триггерной зоне. Он всегда имеет максимальную для данной клетки амплитуду и примерно одинаковую длительность, сколько бы раз ни повторялись вызывающие его условия.

Возникнув в интегративной зоне, потенциал действия быстро распространяется по мембране аксона. Это происходит благодаря появлению локального электрического тока. Поскольку деполяризованный участок мембраны оказывается иначе заряженным, чем соседствующий с ним, между полярно заряженными участками мембраны возникает электрический ток. Под действием этого локального тока деполяризуется до критического уровня соседний участок, что вызывает появление потенциала действия и в нём. В случае миелинизированного аксона таким соседним участком мембраны является ближайший к триггерной зоне перехват Ранвье, затем следующий, и потенциал действия начинает "перепрыгивать" от одного перехвата к другому со скоростью, достигающей 100 м/с.

Разные нейроны могут многим отличаться друг от друга, но возникающие в них потенциалы действия различить очень трудно, а в большинстве случаев и невозможно. Это в высшей степени стереотипный сигнал у самых разных клеток: сенсорных, интернейронов, моторных. Эта стереотипия свидетельствует о том, что сам потенциал действия не содержит никаких сведений о природе породившего его стимула. О силе стимула свидетельствует частота возникающих потенциалов действия, а определением природы стимула занимаются специфические рецепторы и хорошо упорядоченные межнейронные связи.

Таким образом, возникший в триггерной зоне потенциал действия быстро распространяется по ходу аксона к его окончанию. Это передвижение связано с образованием локальных электрических токов, под влиянием которых потенциал действия как бы заново возникает в соседнем участке аксона. Параметры потенциала действия при проведении по аксону нисколько не меняются, что позволяет передавать информацию без искажений. Если аксоны нескольких нейронов оказываются в общем пучке волокон, то по каждому из них возбуждение распространяется изолированно.


Дата добавления: 2015-12-15 | Просмотры: 512 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)