АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Мембранный потенциал покоя

Прочитайте:
  1. Биотоки. Опыты Гальвани и Дюбуа-Реймона. Потенциал покоя и его природа. Мембранно-ионная теория Ю.Бернштейна. Условия и причины поляризации мембраны.
  2. Биоэлектрические процессы. Потенциал действия. Его основные части. Механизм возникновения (на примере ПД скелетной мускулатуры).
  3. В какую фазу потенциала действия активируются и открываются калиевые каналы мембраны?
  4. В) Блокаторы калиевых каналов (средства, пролонгирующие реполяризацию, увеличивающие продолжительность потенциала действия; группа III)
  5. Величины потребления кислорода и расхода энергии у человека в состоянии покоя и при различных видах мышечной работы (по А. И. Колотилову и С.А. Косилову)
  6. Взаимодействие синаптических потенциалов
  7. Влияние произвольного внимания на вызванные потенциалы
  8. Возбудимость ткани на фоне потенциала действия.
  9. Гиперурикемическая (подагрическая) «одержимость» и потенциальное могущество мозга человека
  10. И потенциалов действия.

В покое на наружной стороне плазматической мембраны располагается тонкий слой положительных зарядов, а на внутренней стороне – отрицательных. Электрический заряд наружной поверхности принято считать нулевым, поэтому трансмембранная разность потенциалов или мембранный потенциал покоя имеет отрицательное значение. В типичном для большинства нейронов случае потенциал покоя равен приблизительно -60 – -70 мВ.

Техника прямого измерения потенциала покоя была создана в конце 40-х годов ХХ века. Был изготовлен специальный измерительный электрод: тонкий стеклянный капилляр с оттянутым кончиком диаметром не более 1 мкм и заполненный проводящим электрический ток солевым раствором (3М КСl). который не изменяет внутренний заряд мембраны. В этот раствор с широкого конца капилляра вставляли металлический проводник, а тонким концом протыкали клеточную мембрану. Второй электрод представлял собой хлорированную серебряную пластинку и помещался во внешнюю среду; использовались усилитель слабых электрических сигналов и гальванометр (Рис. 4.5). Объектом исследования был гигантский аксон кальмара, именно на нём удалось получить данные, послужившие основой для мембранной теории (Hodgkin Huxley).

Как же возникает мембранный потенциал покоя? Прежде, чем ответить на этот вопрос, следует ещё раз напомнить, что работой натрий-калиевого насоса в клетке создаётся высокая концентрация ионов калия, а в клеточной мембране для этих ионов есть открытые каналы. Выходящие из клетки по концентрационному градиенту ионы калия увеличивают количество положительных зарядов на наружной поверхности мембраны. В клетке много крупномолекулярных органических анионов и потому изнутри мембрана оказывается заряженной отрицательно. Все остальные ионы могут проходить через покоящуюся мембрану в очень небольшом количестве, их каналы, в основном, закрыты. Следовательно, потенциал покоя обязан своим происхождением, главным образом, току ионов калия из клетки.

Это заключение достаточно просто проверить экспериментально. Если, например, искусственно повысить концентрацию ионов калия вокруг клетки, то их ток из клетки уменьшится или даже вовсе прекратится, поскольку уменьшится концентрационный градиент – движущая сила для этого тока. И тогда начнёт уменьшаться потенциал покоя, он может сделаться равным нулю, если концентрация калия по обе стороны мембраны окажется одинаковой. Есть ещё одна возможность доказать калиевую природу потенциала покоя. Если блокировать калиевые каналы тетраэтиламмонием, то ток ионов калия прекратится, а вслед за этим начнёт уменьшаться потенциал покоя.

Мембрана находящейся в покое клетки пропускает в небольшом количестве ионы натрия и хлора. Две силы гонят ионы натрия в клетку: высокая наружная концентрация и электроотрицательная внутренняя среда клетки. Даже небольшое количество вошедшего в клетку натрия приводит к деполяризации мембраны – уменьшению потенциала покоя. Ионам хлора попасть в клетку труднее, поскольку их отталкивает электроотрицательный слой зарядов на внутренней поверхности мембраны, а значение равновесного потенциала хлора -60 мВ мало отличается от нормальной величины потенциала покоя. Связь между избирательной проницаемостью мембраны для каждого из трёх видов ионов и их концентрациями описывает уравнение Гольдмана: где Е m – значение мембранного потенциала, Р – проницаемость мембраны, зависящая от её толщины и подвижности в ней иона, a – концентрация иона снаружи, i – концентрация его изнутри, R, T и F имеют то же значение, что и в уравнении Нернста.

Из этого уравнения следует, что реальное значение потенциала покоя (Еm = – 65 мВ) является компромиссным между равновесными потенциалами калия (- 75 мВ), натрия (+ 55 мВ) и хлора (- 60 мВ). Нетрудно предсказать, что повышение проницаемости мембраны для натрия приведёт к деполяризации, а увеличение её проницаемости для хлора – к гиперполяризации.

Если принять за 1 проницаемость мембраны в покое для ионов калия, то проницаемость её для ионов натрия составит 0,04, а для хлора – 0,45. Но при возбуждении мембраны это соотношение изменяется и на вершине пика потенциала действия составляет 1(К): 20 (Na): 0,45 (Cl).


Дата добавления: 2015-12-15 | Просмотры: 776 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)