АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

И ИХ ПЕРЕНОС КРОВЬЮ

Прочитайте:
  1. Агрессия в контрпереносе
  2. Актуальные отношения и контрперенос
  3. Анализ переноса и сопротивления — аналитическая психотерапия как эмоциональный опыт
  4. Б) проводится только в случае загрязнения меконием и кровью
  5. Борьба с болью и перенос пострадавшего
  6. Важно не то, какой тип контрпереноса формируется, а степень осознанности этих процессов аналитиком, пластичность идентификаций.
  7. Вкажіть кровосисних переносників збудників кліщового поворотного тифу
  8. ВНЕШНЕЕ ДЫХАНИЕ. ТРАНСПОРТ ГАЗОВ КРОВЬЮ
  9. ВНУТРЕННЕЕ ДЫХАНИЕ. ТРАНСПОРТ ГАЗОВ КРОВЬЮ
  10. Второй этап дыхания — транспорт газов к органам и тканям. Объясните каким образом осуществляется перенос кислорода и углекислого газа кровью?

Переход О из альвеолярного воздуха в кровь и СО из крови в альвео­лы происходит только путем диффузии. Никакого механизма актив­ного транспорта газов здесь не существует. Движущей силой диффу­зии являются разности (градиенты) парциальных давлений (напря­жений) О и СО по обе стороны альвеолярно-капиллярной мембраны или аэрогематического барьера Напряжение газов в различных сре­дах представлено в таблице 5.

Кислород и углекислый газ диффундируют только в растворенном состоянии, что обеспечивается наличием в воздухоносных путях во­дяных паров, слизи и сурфактантов. В ходе диффузии через аэроге-матический барьер молекулы растворенного газа преодолевают большое сопротивление, обусловленное слоем сурфактанта, альвео­лярным эпителием, мембранами альвеол и капилляров, эндотелием сосудов, а также плазмой крови и мембраной эритроцитов.

Диффузионная способность легких для кислорода очень велика. Это обусловлено огромным числом (сотни миллионов) альвеол и

Таблица 5

Напряжение О и СО (мм рт. ст.) при спокойном дыхании воздухом

Среда Кислород Углекислый газ
Альвеолярный воздух Венозная кровь Артериальная кровь Ткани 10-20 50-60

большой их газообменной поверхностью (около 100 м ), а также ма­лой толщиной (около 1 мкм) альвеолярно-капиллярной мембраны. Диффузионная способность легких у человека примерно равна 25 мл О в 1 мин в расчете на 1 мм рт. ст. градиента парциальных давлений кислорода. Учитывая, что градиент рО между притекающей к лег­ким венозной кровью и альвеолярным воздухом составляет около 60 мм рт. ст., этого оказывается достаточно, чтобы за время прохожде­ния крови через легочный капилляр (около 0.8 с) напряжение кисло­рода в ней успело уравновеситься с альвеолярным рО .

Диффузия СО из венозной крови в альвеолы даже при сравни­тельно небольшом градиенте рСО (около 6 мм рт. ст.) происходит достаточно легко, так как растворимость СО в жидких средах в 20-25 раз больше, чем у кислорода. Поэтому после прохождения крови через легочные капилляры рСО в ней оказывается равным альвео­лярному и составляет около

40 мм рт. ст.

Дыхательная функция крови прежде всего обеспечивается достав­кой к тканям необходимого им количества О Кислород в крови на­ходится в двух агрегатных состояниях: растворенный в плазме (0.3 об.%) и связанный с гемоглобином (около 20 об.%) — оксигемоглобин.

Отдавший кислород гемоглобин считают восстановленным или дезоксигемоглобином. Поскольку молекула гемоглобина содержит 4 частицы гема (железосодержащего вещества), она может связать четыре молекулы О . Количество О , связанного гемоглобином в 100 мл крови, носит название кислородной емкости крови и составляет около 20 мл О . Кислородная емкость всей крови человека, содержащей примерно 750 г гемоглобина, приблизительно равна 1 л.

Каждому значению рО в крови соответствует определенное про­центное насыщение гемоглобина кислородом. Кривую зависимости процентного насыщения гемоглобина кислородом от величины пар­циального напряжения называют кривой диссоциации оксигемоглобина (рис. 21). Анализ хода этой кривой сверху вниз показывает, что с уменьшением рО в крови происходит диссоциа­ция оксигемоглобина, т. е. процентное содержание

оксигемоглобина уменьшается, а восстановленного растет.

В различных условиях деятельности может возникать острое снижение насыщенности крови кислородом —гипоксемия. При­чины гипоксемии весьма разнообразны. Она может развиваться вследствие снижения рО в альвеолярном воздухе (произвольная за­держка дыхания, вдыхание воздуха с пониженным рО ), при физи­ческих нагрузках, а также при неравномерной вентиляции различ­ных отделов легких.

Образующийся в тканях СО диффундирует в тканевые капилля­ры, откуда переносится венозной кровью в легкие, где переходит в

Рис. 21. Кривая диссонации оксигемоглобина в крови человека в покое

А — содержание НbO в артериальной крови, В — то же в венозной крови

 

альвеолы и удаляется с выдыхаемым воздухом. Углекислый газ в крови (как и О ) находится в двух состояниях: растворенный в плазме (около 5% всего количества) и химически связанный с другими ве­ществами (95%). СО в виде химических соединений имеет три фор­мы: угольная кислота (Н СО ), соли угольной кислоты (NaHCO ) ив связи с гемоглобином (НвНСО ).

В крови тканевых капилляров одновременно с поступлением СО внутрь эритроцитов и образованием в них угольной кислоты проис­ходит отдача О оксигемоглобином. Восстановленный Н в легко связывает водородные ионы, образующиеся при диссоциации угольной кислоты. Таким образом, восстановленный Н в венозной крови спо­собствует связыванию СО , аоксигемоглобин, образующийся в ле­гочных капиллярах, облегчает его отдачу.

В состоянии покоя с дыханием из организма человека удаляется 230-250 мл СО в 1 минуту. При удалении из крови СО из нее уходит примерно эквивалентное число ионов водорода.

Таким порядком дыхание участвует в регуляции кислотно-щелочного состояния во внутренней среде организма.

Обмен газов между кровью и тканями осуществляется также пу­тем диффузии. Между кровью в капиллярах и межтканевой жидко­стью существует градиент напряжения О , который составляет 30-80 мм рт. ст., а напряжение СО в интерстициальной жидкости на 20-40 мм рт. ст. выше, чем в крови. Кроме того, на обмен О и СО в тканях влияют площадь обменной поверхности, количество эритроцитов в крови, скорость кровотока, коэффициенты диффузии газов в тех средах, через которые осуществляется их перенос.

Артериальная кровь отдает тканям не весь О . Разность между об.% О в притекающей к тканям артериальной крови (около 20 об.%) и оттекающей от них венозной кровью (примерно 13 об.%)

называется артерио-венозной разностью по кисло­роду (7 об.%). Эта величина служит важной характеристикой дыха­тельной функции крови, показывая, какое количество О доставля­ют тканям каждые 100 мл крови. Для того, чтобы установить, какая часть приносимого кровью О, переходит в ткан и, вычисляют коэффициент утилизации (использования) кислорода. Его определяют путем деления величины артерио-венозной разности на содержание О в артериальной крови и умножения на 100. В покое для всего организма коэффициент утилизации О равен примерно 30-40%. Однако в миокарде, сером веществе мозга, печени и корко­вом слое почек он составляет 40-60%. При тяжелых физических на­грузках коэффициент утилизации кислорода работающими скелет­ными мышцами и миокардом достигает 80-90%.

В снабжении мышц О при тяжелой работе имеет определенное значение внутримышечный пигмент м и о г л о б и н, который связывает дополнительно 1.0-1.5.Л О . Связь О с миоглобином более прочная, чем с гемоглобином. Оксимиоглобин отдает О только при выраженной гипоксемии.


Дата добавления: 2015-05-19 | Просмотры: 820 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)