АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ РАЗВИТИЯ ВЫНОСЛИВОСТИ

Прочитайте:
  1. DS. :ФКУ, позднее выявление, отставание психомоторного развития.
  2. F8 Нарушения психологического развития
  3. F80-F89 РАССТРОЙСТВА ПСИХОЛОГИЧЕСКОГО (ПСИХИЧЕСКОГО) РАЗВИТИЯ
  4. II. Кальциевые механизмы
  5. II. Клинико-физиологические основы отклоняющегося поведения.
  6. II. Лист сестринской оценки риска развития и стадии пролежней
  7. II.Механорецепторные механизмы регуляции. Легочно-вагусная регуляция дыхания
  8. III. Сердечная недостаточность, понятие, формы, патофизиологические механизмы развития
  9. IV. Показатели физического развития населения.
  10. IX. Задержка полового развития

Общая выносливость зависит от доставки кислорода работаю-щиммышцами, главным образом, определяется функционировани­ем кислородтранспортной системы: сердечно-сосудистой, дыхатель­ной и системой крови.

Развитие общей выносливости прежде всего обеспечивается

раз­носторонними перестройками в дыхательной системе. Повышение эффективности дыхания достигается:

• увеличением (на 10-20 %) легочных объемов и емкостей (ЖЕЛ достигает 6-8 л и более),

• нарастанием глубины дыхания (до 50-55% ЖЕЛ),

• увеличением диффузионной способности легких, что обус­ловлено увеличением альвеолярной поверхности и объема крови в легких, протекающей через расширяющуюся сеть ка­пилляров,

• увеличением мощности и выносливости дыхательных мышц, что приводит к росту объема вдыхаемого воздуха по отноше­нию к функциональной остаточной емкости легких (остаточ­ному объему и резервному объему выдоха).

Все эти изменения способствуют также экономизации дыхания: большему поступлению кислорода в кровь при меньших величинах легочной вентиляции. Повышение возможности более выгодной ра­боты за счет аэробных источников энергии позволяет спортсмену дольше не переходить к энергетически менее выгодному использо­ванию анаэробных источников, т. е. повышает вентиляционный по­рог анаэробного обмена (ПАНО).

Решающую роль в развитии общей выносливости играют также морфофункциональные перестройки в сердечно-сосудистой систе­ме, отражающие адаптацию к длительной работе:

• увеличение объема сердца («большое сердце» особенно харак­терно для спортсменов-стайеров — рис. 31) и утолщение сер­дечной мышцы — спортивная гипертрофия,

• рост сердечного выброса (увеличение ударного объема крови),

• замедление частоты сердечных сокращений в покое (до 40-50 уд./мин) в результате усиления парасимпатических влияний — спортивная брадикардия, что облегчает восстановление сердеч­ной мышцы и последующую ее работоспособность,

• снижение систолического артериального давления в покое (ниже 105 мм рт. ст.) — спортивная гипотония.

В системе крови повышению общей выносливости способствуют:

• увеличение объема циркулирующей крови (в среднем на 20%) за счет, главным образом, увеличения объема плазмы, при

Рис. 31. Сердце нетренированного (а) и тренированного (б) человека

 

этом адаптивный эффект обеспечивается:

1) снижением вяз­кости крови и соответствующим облегчением кровотока и 2) большим венозным возвратом крови, стимулирующим более сильные сокращения сердца,

• увеличение общего количества эритроцитов и гемоглобина (следует заметить, что при росте объема плазмы показател и их относительной концентрации в крови снижаются),

• уменьшение содержания лактата (молочной кислоты) в крови при работе, связанное, во-первых, с преобладанием в мышцах выносливых людей медленных волокон, использующих лак-тат как источник энергии, и во-вторых, обусловленное увели­чением емкости буферных систем крови, в частности, ее ще­лочных резервов. При этом лактатный порог анаэробного об­мена (ПАНО) также нарастает, как и вентиляционный ПАНО.

Несмотря на указанные адаптивные перестройки функций, в организме стайера происходят значительные нарушения постоянства внутренней среды (перегревание и переохлаждение, падение содер­жания глюкозы в крови и т. п.). Способность спортсмена переносить весьма длительные нагрузки обеспечивается его способностью «тер­петь» такие изменения.

В скелетных мышцах у спортсменов, специализирующихся в ра­боте на выносливость, преобладают медленные мышечные волокна (до 80-90 %). Рабочая гипертрофия протекает по саркоплазматическому типу, т.е. за счет роста объема саркоплазмы. В ней накапливаются запасы гликогена, липидов, миоглобина, становится богаче капиллярная сеть, увеличивается число и размеры митохонд­рий. Мышечные волокна при длительной работе включаются по­сменно, восстанавливая свои ресурсы в моменты отдыха.

В центральной нервной системе работа на выносливость сопро­вождается формированием стабильных рабочих доминант, которые обладают высокой помехоустойчивостью, отдаляя развитие запре­дельного торможения в условиях монотонной работы. Особой спо­собностью к длительным циклическим нагрузкам обладают спорт­смены с сильной уравновешенной нервной системой и невысоким уровнем подвижности — флегматики.

Специальные формы выносливости характеризуются разными адаптивным перестройками организма в зависимости от специфики физической нагрузки.

Специальная выносливость в циклических видах спорта зависит от длины дистанции, которая определяет соотношение аэробного и анаэробного энергообеспечения.

В лыжных гонках на длинные дистанции соотношение аэробной и анаэробной работы порядка 95% и 5%; в академической гребле на 2 км, соответственно, 70% и 30%; в спринте — 5% и 95%. Это определя­ет разные требования к двигательному аппарату и вегетативным сис­темам в организме спортсмена.

Специальная выносливость к статической работе базируется на высокой способности нервных центров и работающих мышц поддер­живать непрерывную активность (без интервалов отдыха) в анаэроб­ных условиях. Торможение вегетативных функций со стороны мощ­ной моторной доминанты по мере адаптации спортсмена к нагрузке постепенно снижается, что облегчает дыхание и кровообращение. Статическая выносливость мышц шеи и туловища, содержащих больше медленных волокон, выше по сравнению с мышцами конеч­ностей, более богатых быстрыми волокнами.

Силовая выносливость зависит от переносимости нервной систе­мой и двигательным аппаратом многократных повторений натуживания, вызывающего прекращение кровотока в нагруженных мыш­цах и кислородное голодание мозга. Повышение резервов мышечно­го гликогена и кислородных запасов в миоглобине облегчает работу мышц. Однако почти полное и одновременное вовлечение в работу всех ДЕ лишает мышцы резервных ДЕ, что лимитирует длительность поддержания усилий.

Скоростная выносливость определяется устойчивостью нервных центров к высокому темпу активности. Она зависит от быстрого вос­становления АТФ в анаэробных условиях за счет креатинфосфата и реакций гликолиза.

Выносливость в ситуационных видах спорта обусловлена устойчиво­стью центральной нервной системы и сенсорных систем к работе пере­менной мощности и характера — «рваному» режиму, вероятностным перестройкам ситуации, многоальтернативному выбору, сохранению координации при постоянном раздражении вестибулярного аппарата.

Выносливость к вращениям и ускорениям требует хорошей ус­тойчивости вестибулярной сенсорной системы. Квалифициро­ванные фигуристы, например, без отрицательных соматических и вегетативных реакций могут переносить до 300 вращений на крес­ле Барани. После многократных вращений вокруг вертикальной оси в висе (тест Вертикаль) у этих спортсменов практически от­сутствует так называемое время поиска стабильной позы после опускания на опору. Активные вращения при выполнении специ­альных упражнений в большей мере способствуют повышению вестибулярной устойчивости, чем пассивные вращения на трена­жерах.

Выносливость к гипоксии, характерная, например, для альпини­стов, связана с понижением тканевой чувствительности нервных центров, сердечной и скелетных мышц к недостатку кислорода. Это свойство в значительной мере является врожденным. Лишь несколько спортсменов-альпинистов во всем мире смогли под­няться на высоту более 8 тыс. м (Эверест) без кислородного при­бора.


Дата добавления: 2015-05-19 | Просмотры: 1022 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)