АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

МОРФОФУНКЦИОНАЛЬНЫЕ ОСНОВЫ МЫШЕЧНОЙ СИЛЫ

Прочитайте:
  1. D. ОСНОВЫ МЕДИЦИНСКОЙ МИКОЛОГИИ
  2. E) уменьшением синтеза белка на единицу мышечной массы
  3. I. ОСНОВЫ МЕДИЦИНСКОЙ ГЕЛЬМИНТОЛОГИИ
  4. II. Клинико-физиологические основы отклоняющегося поведения.
  5. V. Молекулярные основы патогенеза эндокринных опухолей
  6. V2: Мышцы и фасции области плечевого сустава. Мышцы и фасции плеча. Топография подмышечной впадины и плеча. Мышцы, фасции и топография предплечья.
  7. VII. Основы ухода за больным.
  8. А) физиологические основы газообмена в легких.
  9. А) физиологические основы формирования чувства голода, аппетита и насыщения.
  10. Абдоминалгии вертеброгенной и мышечной природы

 

Движение является результатом взаимодействия внутренних и внешних сил, развиваемых в опорно-двигательном аппарате, — ак­тивных (возникающих при сокращении или напряжении мышцы во время ее возбуждения) и пассивных (упругое напряжение при растя­жении мышцы, сопротивление мышцы и ее сухожилия).

Сила мышцы зависит отряда морфологических и физиологи­ческих факторов: количества и свойств мышечных волокон в мышце,

исходной длины мышцы, характера нервных импульсов, механи­ческих условий действия мышцы на кости скелета.

Сила мышцы является суммой силы отдельных ее мышечных воло­кон. Подсчитано, что 1 одиночное мышечное волокно икроножной мышцы развивает напряжение 100-200 мг, ІДЕ икроножной мыш­цы человека содержит около 2000 мышечных волокон и развивает напряжение 200-400 г, 1 икроножная мышца содержит около 1000 ДЕ, т. е. развивает напряжение 200-400 кг.

Большое значение имеет анатомическое строение мышцы. В параллельно-волокнистых и веретенообразных мышцах (камбаловидная мышца и др.) сила мышц тем больше, чем больше ее анатомический поперечник, т. е. площадь поперечного сечения целой мышцы. В перистых мышцах (двуглавая мышца и др.) физиологический попе­речник, т. е. площадь поперечного сечения всех мышечных волокон гораздо больше, чем ее анатомический поперечник. В такой мышце упаковано значительно больше мышечных волокон и, соответствен­но, больше ее сила.

На силу сокращения мышцы влияет ее исходная длина, так как от нее. зависит возможное количество поперечных мостиков между актином и миозином. Предполагают, что в каждом цикле при­соединения-отсоединения поперечных мостиков расходуется энер­гия 1 молекулы АТФ на 1 поперечный мостик. Следовательно, чем больше образуется в мышечном волокне актино-миозиновых мости­ков, тем выше скорость расщепления АТФ, больше тяга сократитель­ных белков и, соответственно, больше развиваемая мышцей сила.

Наибольшее количество актино-миозиновых контактов образу­ется при небольшом растяжении мышцы до некоторой оптимальной длины. При значительном растяжении саркомера нити актина далеко расходятся в стороны и практически не контактируют с расположен­ным в средней части саркомера миозином. В случае же резкого уменьшения длины саркомера нити актина в центре перекрывают друг друга, препятствуя контактам с миозином и также уменьшая число образуемых мостиков. В связи с этими особенностями взаимо­действия сократительныхбелков наибольшая сила мышцы проявля­ется при некотором ее предварительном растяжении.

Одной из важнейших характеристик скелетных мышц, влияющих на силу сокращения, является состав (композиция) мы­шечных волокон. Различают 3 типа мышечных волокон — медленные неутомляемые (I типа), быстрые неутомляемые или про­межуточные (11-а типа) и быстрые утомляемые (11-б типа).

Медленные волокна (1 типа), их обозначают также SO — Slow Oxydative (англ. — медленные окислительные) — это выносливые (неутомляемые) и легко возбудимые волокна, с богатым кровоснаб­жением, большим количеством митохондрий, запасов миоглобина и

с использованием окислительных процессов энергообразования (аэробные). Их, в среднем, у человека 50%. Они легко включаются в работу при малейших напряжениях мышц, очень выносливы, но не обладают достаточной силой. Чаще всего они используются при под­держании ненагрузочной статической работы, например, при сохра­нении позы.

Быстрые утомляемые волокна (11-б типа) или FG — Fast Glicolitic (быстрые гликолитические) используют анаэробные процессы энер­гообразования (гликолиз). Они менее возбудимы, включаются при больших нагрузках и обеспечивают быстрые и мощные сокращения мышц. Зато эти волокна быстро утомляются. Их примерно 30%. Во­локна промежуточного типа (П-а) — быстрые неутомляемые, окис­лительные, их около 20%. В среднем, для разных мышц характерно различное соотношение медленных неутомляемых и быстрых утом­ляемых волокон. Так, в трехглавой мышце плеча преобладают быст­рые волокна (67%) над медленными (33%), что обеспечивает скоростно-силовые возможности этой мышцы (рис. 14), а для более медлен­ной и выносливой камбаловидной мышцы характерно наличие 84% медленных и всего 16% быстрых волокон (Салтан Б., 1979).

Однако, состав мышечных волокон в одной и той же мышце имеет огромные индивидуальные различия, зависящие от врожденных типо­логических особенностей человека. К моменту рождения человека его мышцы содержат лишь медленные волокна, но под влиянием не­рвной регуляции устанавливается в ходе онтогенеза генетически за­данное индивидуальное соотношение мышечных волокон разного типа. По мере перехода от зрелого возраста к пожилому число быст­рых волокон у человека заметно снижается и, соответственно, умень­шается мышечная сила. Например, наибольшее количество быстрых волокон в наружной головке 4-х главой мышцы бедра мужчины (около 59-63%) отмечается в возрасте 20-40 лет, а в возрасте 60-65 лет их число почти на 1/3 меньше (45%).

 

Рис. 14. Состав мышечных волокон в разных мышцах

Медленные — черным цветом; быстрые — серым

 

Количество тех или других мышечных волокон не изменяется в процессе тренировки. Возможно только нарастание толщины (гипер­трофия) отдельных волокон, а также некоторое изменение свойств промежуточных волокон. При направленности тренировочного про­цесса на развитие силы происходит нарастание объема быстрых воло­кон, что и обеспечивает повышение силы тренируемых мышц.

Характер нервных импульсов изменяет силу сокращения мышц тремя способами:

1) увеличением числа активных ДЕ — это механизм вовлечения или рекрутирования ДЕ (сначала происходит вовлечение медленных и более возбудимых ДЕ, затем — высокопо­роговых быстрых Д Е);

2) увеличением частоты нервных импульсов, в результате чего происходит переход от слабых одиночных сокраще­ний к сильным тетаническим сокращениям мышечных волокон;

3) увеличением синхронизации ДЕ, при этом происходит увеличение силы сокращения целой мышцы за счет одновременной тяги всех ак­тивных мышечных волокон.

Существенное значение имеют механические условия работы мышцы —точка приложения ее силы и точка прило­жения сопротивления (поднимаемого груза). Например, при сгиба­нии в локте вес поднимаемого груза может быть порядка 40 кг и более, при этом сила мышц-сгибателей достигает 250 кг, а тяга су­хожилий — 500 кг.

Между силой и скоростью сокращения мышцы существует опре­деленное соотношение, имеющее вид гиперболы (соотношение сила — скорость, по А. Хиллу). Чем выше сила, развиваемая мышцей, тем меньше скорость ее сокращения, и наоборот, с нараста­нием скорости сокращения падает величина усилия. Наибольшую скорость развивает мышца, работающая без нагрузки. Скорость мы­шечного сокращения зависит от скорости передвижения поперечных мостиков, т. е. от частоты гребковых движений в единицу времени. В быстрых ДЕ эта частота выше, чем в медленных ДЕ, и, соответствен­но, потребляется больше энергии АТФ. Во время сокращения мы­шечных волокон в 1 с происходит примерно от 5 до 50 циклов при­крепления-отсоединения поперечных мостиков. При этом никаких колебаний силы в целой мышце не ощущается, так как ДЕ работают асинхронно. Лишь при утомлении возникает синхронная работа ДЕ, и в мышцах появляется дрожь (тремор утомления).

 


Дата добавления: 2015-05-19 | Просмотры: 1049 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.006 сек.)