Сходимость по распределению
9.1. Пусть на (Ω, F, P) задана последовательность случайных элементов со значениями в , где E - польское пространство, т.е. полное сепарабельное метрическое пространство, а алгебра на E.
Определение. Будем говорить, что - последовательность случайных элементов со значениями в E сходится по распределению при к случайному элементу со значениями в E и обозначать , если для любой функции Сb(E), где Сb(E) - пространство непрерывных ограниченных на E функций со значениями в R1, справедливо () = M ().
Определение. Семейство вероятностных мер на называется слабо сходящимся к некоторой мере P0 и обозначается P n P 0 , если для любой Сb(E)
= .
Из этих определений вытекает утверждение.
Теорема 35. Пусть - семейство случайных элементов, а соответствующее им семейство распределений , тогда и только тогда, когда P n P о, т.е. () = M (), для Сb(E).
9.2. Определение. Семейство вероятностных мер { P n}n > 1 на называется относительно компактным, если оно содержит подпоследовательность, слабо сходящуюся к некоторой вероятностной мере Р.
Определение. Семейство вероятностных мер { P n}n > 1 называется плотным, если для любого >0 существует компакт E такой, что Рn ( < .
Приведем достаточное условие плотности семейства { P n}n > 1.
Предложение 36. Если последовательность случайных величин , где >0, равномерно интегрируема, то семейство { P n}n > 1 плотно.
9.3. Следующее утверждение играет фундаментальную роль в теории слабой сходимости.
Теорема 37 (Прохоров) Пусть { P n}n > 1 – семейство вероятностных мер на . { P n}n > 1 – относительно компактно тогда и только тогда, когда оно является плотным. (без доказательства).
9.4. Теорема 38. Справедливы следующие импликации:
1) , 2) ,
3) .
Доказательство этого утверждения можно найти например в [ 1 ].
Дата добавления: 2015-01-18 | Просмотры: 496 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 |
|