АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Медико-тактическая характеристика очагов радиационных поражений

Прочитайте:
  1. II Мотивационная характеристика темы
  2. II. 4. ХАРАКТЕРИСТИКА АНТИРЕТРОВИРУСНЫХ ПРЕПАРАТОВ И ПРИНЦИПЫ КОМБИНАЦИИ ГРУПП ПРЕПАРАТОВ ДЛЯ ВААРТ
  3. II. МОТИВАЦИОННАЯ ХАРАКТЕРИСТИКА ТЕМЫ
  4. II. Мотивационная характеристика темы.
  5. II. МОТИВАЦИОННАЯ ХАРАКТЕРИСТИКА ТЕМЫ.
  6. IV. ОБЩАЯ ХАРАКТЕРИСТИКА ВИРУСОВ
  7. IV. Права помощника врача-эпидемиолога (паразитолога) отделения природно-очаговых, особо опасных и паразитарных заболеваний
  8. V Характеристика клинических синдромов
  9. VIII. Права помощника врача-эпидемиолога (паразитолога) отделения природно-очаговых, особо опасных и паразитарных заболеваний
  10. XXIII. ОБЩАЯ ХАРАКТЕРИСТИКА

 

Радиоактивность и сопровождающие ее ионизирующие излучения - вечно существующие явления. Зарождение и развитие жизни на земле происходило в присутствии естественного радиационного фона.

Естественный радиационный фон образуют космические лучи и радиоактивные элементы, содержащиеся в горных породах, атмосфере, воде, пище, растениях и живых организмах.

Среднегодовые индивидуальные дозы облучения населения за счет естественных источников составляют около 2 мЗв (200 мбэр). Из них примерно 1,675 мЗв (167,5 мбэр) земного происхождения и 0,315 мЗв (31,5 мбэр) - космического.

Приблизительно 2/3 дозы, накопленной человеком от естественных источников, обусловлены РВ, попавшими в организм с вдыхаемым воздухом, пищей или водой (внутреннее облучение). А остальная часть дозы приходится на источники, находящиеся вне организма (внешнее облучение).

Степень радиационного воздействия естественных источников на человека зависит от многих факторов и может отклоняться в сторону увеличения и наоборот. Так, на людей, живущих в горах, в большей мере действует космическое излучение, и уровень облучения растет с высотой, поскольку толщина слоя атмосферы, играющего роль защитного экрана, при этом уменьшается. Неодинаковы и уровни земной радиации для разных мест, что зависит от концентрации РВ в земной коре.

По оценке Научного Комитета по действию атомной радиации ООН, примерно 3/4 среднегодовой дозы облучения населения от земных источников радиации, приходится на радон и продукты его радиоактивного распада. Радон высвобождается повсеместно из земной коры. Поступает в помещения, просачиваясь через фундамент и пол из грунта, выделяясь из материалов строительных конструкций (бетон, фосфогипс и др.), а также с природным газом и водой, особенно при пользовании душем. В плохо вентилируемых помещениях концентрации радона могут быть в 8 раз выше, чем в наружном воздухе.

Радон попадает в организм с вдыхаемым воздухом и, по мнению специалистов, является одной из основных причин рака легких.

Наиболее значимыми из техногенных (созданных человеком) источников радиации являются используемые в медицинских целях (диагностика, лечение) и строительные материалы.

Среднегодовая индивидуальная доза облучения населения от источников радиации, используемых в медицине, около 1,5 мЗв (150 мбэр). Разумеется, индивидуальные дозы, получаемые разными людьми, сильно различаются и колеблются в пределах 0,03—6,0 мЗв (3-600 мбэр). Значительно больше дозы облучения медперсонала, работающего с источниками ионизирующих излучений. Среднегодовая доза, получаемая населением от строительных материалов, около 1 мЗв (100 мбэр), при этом дерево и кирпич обладают значительно меньшей радиоактивностью, чем гранит и пемза, используемые при строительстве. При нормальной работе ядерных энергетических установок, в том числе и реакторов атомных электростанций, выбросы в окружающую среду РВ небольшие. Среднегодовая индивидуальная доза населения от всех действующих на земле атомных электростанций равна 0,00017 мЗв (0,017 мбэр). Эта доза является незначительным вкладом в среднюю суммарную дозу, получаемую населением от всех источников неаварийного облучения, составляющую около 5 мЗв (500 мбэр) в год.

Приведенные цифры отнесены к условиям нормальной (неаварийной) работы атомных энергетических установок. Однако, дозы облучения населения при авариях, сопровождающихся выбросом радиоактивных веществ в окружающую среду, могут оказаться гораздо больше.

Ядерные энергетические установки и другие объекты экономики, при авариях и разрушениях которых могут произойти массовые радиационные поражения людей, животных и растений, называют радиационноопасными объектами.

К радиационноопасным относятся атомные станции (атомные электростанции, атомные станции теплоснабжения, атомные энерготехнологические станции), предприятия ядерного топливного цикла и др.

В настоящее время в мире работают сотни ядерных энергетических установок. Подавляющее их большинство предназначено для выработки электроэнергии. Атомные электростанции (АЭС) экономичнее топливных станций, и при правильной их эксплуатации являются самыми чистыми источниками получения энергии, в отличие от тепловых электростанций, не загрязняют атмосферу дымом и сажей.

На АЭС в качестве ядерного топлива используется преимущественно двуокись урана-238, обогащенная ураном-235. Топливо находится в тепловыделяющих элементах, размещающихся в активной зоне реактора, где происходит цепная ядерная реакция (самоподдерживающаяся реакция деления ядер ядерного топлива). Выделяющееся в ходе реакции тепло используется для получения электроэнергии.

В ходе реакции в тепловыделяющих элементах накапливаются продукты ядерного деления, около 200 радиоактивных изотопов, которые по своему качественному составу не отличаются от продуктов, образующихся при взрывах ядерных боеприпасов. Количественное различие между продуктами ядерного деления и взрыва заключается в том, что реакция деления в тепловыделяющих элементах протекает не мгновенно, как при ядерном взрыве, а длится многие месяцы. За это время короткоживущие элементы распадаются, при одновременном накоплении продуктов деления с большим периодом полураспада.

Количество и изотопный состав продуктов ядерного деления зависит от типа, энергетической мощности и продолжительности работы реактора.

За время эксплуатации атомных энергетических станций в ряде стран произошло более 100 аварий с выбросом радиоактивных веществ в окружающую среду.

Выброс РВ за пределы ядерно-энергетического реактора, в результате чего может создаваться повышенная радиационная опасность, представляющая собой угрозу для жизни и здоровья людей, называется радиационной аварией.

В зависимости от границ распространения радиоактивных веществ и радиационных последствий выделяют: локальные аварии (радиационные последствия ограничиваются одним зданием, сооружением с возможным облучением персонала), местные аварии (радиационные последствия ограничиваются территорией АЭС) и общие аварии (радиационные последствия распространяются за границу территории АЭС).

26 апреля 1986 г. произошла крупная авария на 4-м блоке Чернобыльской АЭС с частичным разрушением активной зоны реактора и выбросом РВ за пределы блока. Поскольку авария произошла перед остановкой блока на плановый ремонт, в реакторе накопилось большое количество радиоактивных продуктов деления. Суммарный выброс продуктов деления, не считая радиоактивных благородных газов, составила 50 МКи (миллионов кюри), что составляет примерно 3,5% общего количества радиоактивных веществ в реакторе на момент аварии.

Выброс продолжался с 26 апреля по 5 мая 1986 г. в разных атмосферных условиях (направление и скорость ветра и др.), поэтому РВ распространялись по нескольким направлениям под влиянием движения приземных слоев воздуха, загрязняя местность с разной степенью интенсивности, создавая мозаичную картину на местности.

В первые часы и сутки после аварии действие на людей загрязнения окружающей среды определяется внешним облучением от радиоактивного облака (продукты деления ядерного топлива, смешанные с воздухом) радиоактивных выпадений на местности (продукты деления, выпадающие из радиоактивного облака), внутренним облучением вследствие вдыхания радиоактивных веществ из облака, а также за счет загрязнения поверхности тела человека этими веществами.

В дальнейшем, в течение многих лет, накопление дозы облучения будет происходить за счет употребления загрязненных продуктов питания и воды.

Важной особенностью аварийного выброса РВ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации и санитарной обработки.

Доля активности радиоактивных веществ, выброшенных из реактора при аварии на Чернобыльской АЭС, составила: йод-131 - 20%; цезий-137 - 13%; цезий-134 - 10%; барий-140 - 5,6%; стронций-89 - 4%; стронций-90 - 4% и другие - менее 4%.

В связи с тем, что период полураспада основных продуктов деления, вызвавших радиоактивное загрязнение, относительно велик, за исключением йода-131, уменьшение мощности дозы происходит медленно. Например, мощность дозы γ-излучения на местности к концу первого года уменьшается в 90 раз по сравнению с мощностью дозы на 1 час после аварии. При заражении же территории продуктами ядерного взрыва, мощность дозы за этот срок уменьшается в 20 тыс раз.

В первые месяцы, особенно дни и недели, значительную опасность представляет йод-131, поступающий в организм (инкорпорация) с вдыхаемым воздухом, а также с загрязненными пищевыми продуктами и водой. Этот радиоактивный изотоп йода, попадая из крови в небольшую по объему и массе (25-30 г) щитовидную железу, накапливается в ней. При распаде йода-131 выделяются β-частицы, непосредственно воздействующие на ткани железы. Учитывая короткий период полураспада йода-131 (8 дней), создается опасность интенсивного облучения этой весьма чувствительной к радиации эндокринной железы.

Радиоактивный стронций накапливается в костях, а цезий - в мышечной ткани. Период полураспада этих радиоактивных веществ около 30 лет, что обусловливает возможность длительного их поступления в организм с водой и пищевыми продуктами, выращенными на загрязненной территории.

При одноразовом выбросе РВ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. Складывающаяся при этом радиационная обстановка не столь сложная, как при многократном или растянутом во времени выбросе радиоактивных веществ и резко меняющихся метеорологических условиях.

След радиоактивного облака, формирующийся в результате выпадения радио­активных веществ из облака на поверхность земли при одноразовом выбросе, имеет вид эллипса. На территории следа условно выделяются зоны радиоактивного загрязнения (М, А, Б, В и Г), характеризующиеся мощностью дозы излучения на 1 час после аварии и дозами излучения на внешней и внутренней границах каждой зоны, за первый год с момента аварии (табл. 21).

 

Таблица 21


Дата добавления: 2015-02-05 | Просмотры: 995 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)