АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Физиология системы гемостаза
Система гемостаза играет важную роль в жизнедеятельности организма и представляет собой сложную биологическую систему, которая обеспечивает жидкое агрегатное состояние крови, предупреждение и остановку кровотечения. Это обеспечивается благодаря взаимодействию четырех звеньев гемостаза: сосудисто-тромбоцитарного (образующего первичный тромб), свертывающего (образующего вторичный, красный тромб), противосвертывающего (препятствующего образованию фибрин-тромба), фибринолитического (обеспечивающего растворение фибрин-тромба в кровеносных сосудах).
Сосудисто-тромбоцитарный гемостаз представлен эндотелием и гладкой мускулатурой сосудов, а также тромбоцитами. Суть первичного тромбоцитарного гемостаза заключается в образовании тромбов в сосудах низкого давления (микроциркуляции) в 3 этапа: местной вазоконстрикцией (местное действие серотонина, адреналина, тромбоксана А2), адгезией (прилипанием) тромбоцитов к поврежденному (обнаженному) коллагену эндотелия сосудов с формированием тромбоцитарных агрегатов за счет агрегации и сокращения тромбоцитов с образованием белого тромба. В адгезии тромбоцитов принимают участие ионы кальция и синтезируемый в эндотелии сосудов белок-фактор Виллебранда.
Выстилая просвет сосудов изнутри, эндотелий удерживает элементы крови в сосудистом русле, препятствует их миграции в интерстициальное пространство.
В физиологических условиях тромбоциты не агрегируют между собой и не приклеиваются к сосудистой стенке в силу того, что последняя постоянно генерирует простациклин, который образуется из арахидоновой кислоты. Это наиболее мощный физиологический антиагрегант. Механизм действия связан с активацией аденилатциклазы, фермента, превращающего АТФ в ц-АМФ. Цитоплазматическая мембрана эндотелиальных клеток синтезирует тромбомодулин, который связывает тромбин, благодаря чему последний утрачивает способность к свертыванию, но сохраняет активирующее действие на систему двух важнейших антикоагулянтов - протеина С и Z. Эндотелиальные клетки продуцируют тканевой активатор фибринолиза, фиксируют на своей поверхности антикоагулянтный комплекс антитромбин III + гепарин, секретирует фактор Виллебранда, фибронектин который связывается с рецепторами форменных элементов крови и эндотелиальных клеток, а также и с фибрином, что способствует упрочнению тромба.
В 1980 году был открыт эндотелиальный расслабляющий фактор (ЭРФ), а в 1982 году эндотелиальный стимулирующий фактор (ЭСФ). ЭСФ суживает сосуд, а ЭРФ - расширяет, и оба фактора продуцируются эндотелием. Действующим началом ЭРФ является оксид азота, который образуется в эндотелии сосудов под действием многих медиаторов (кинины, ацетилхолин и др.) расслабляет в этом месте гладкую мышцу сосуда через систему гуанилатциклазы, с образованием ц-ГМФ. Последний уменьшает концентрацию ионов кальция в цитоплазме тромбоцитов, является синергистом простациклина.
Оксид азота образуется не только под влиянием эндотелиального импульса, когда он действует как физиологический регулятор тканевого кровотока. При критических состояниях оксид азота синтезируется активированными макрофагами и другими клетками иммунореактивной системы, и такой оксид азота вызывает патологическое расширение сосудов, принципиально отличающегося от ауторегуляции кровотока.
При повреждении эндотелия тромбоциты вступают в контакт с белками субэндотелия - коллаген, фактор Виллебранда, тромбоспондин, фибронектин и др. Помимо тромбина активацию тромбоцитов вызывают выделяющиеся из клеток, при их повреждении, фактор агрегации тромбоцитов, АДФ, а также выбрасывающиеся в кровоток катехоламины, серотонин и др. Все эти агенты имеют специфические рецепторы на тромбоцитарной плазматической мембране.
Адгезивно-агрегационная функция тромбоцитов в значительной степени зависит от транспорта ионов кальция в эти клетки, а также от образования из мембранных фосфолипидов арахидоновой кислоты и циклических производных простагландинов. При этом в самих тромбоцитах образуется мощный стимулятор агрегации и ангиоспазма - тромбоксан А2, а в эндотелиальных клетках - антиагрегант и вазодилататор - простациклин. При повреждении эндотелия начинает преобладать образование тромбоксана. Этот дисбаланс между тромбоксаном и простациклином резко усиливает агрегацию.
Плазменный (коагуляционный) гемостаз осуществляется благодаря 13 факторам свертывания крови, которые последовательно взаимодействуют друг с другом, превращая их из неактивного состояния в активное. Различают две группы факторов свертывания крови: ферментные и неферментные. Ферментные факторы занимают самостоятельную ступень в коагуляционном каскаде. Неферментные факторы являются только мощными катализаторами процесса свертывания крови (факторы V и VIII). Фактор V усиливает активность X фактора, а VIII фактор повышает активность IX фактора. Активация и взаимодействие факторов свертывания крови почти на всех этапах процесса происходят на свободных плазменных фосфолипидных мембранах. С помощью ионов кальция факторы свертывания фиксируются на фосфолипидных мембранах.
Есть два пути свертывания крови. Запуск внутреннего механизма свертывания начинается с активации фактора Хагемана (XII). Каллекриин усиливает активацию фактора XII, превращая в фактор XIIа. Фактор XIIа активирует ф.XI, а XIа в присутствии ионов кальция активирует ф.IX. Фактор IXа активирует фактор X в присутствии фактора VIII, ионов кальция и фосфолипидов тромбоцитов. Параллельно работает внешний механизм свертывания крови – тканевой тромбопластин, содержащийся в эндотелиальных и гладкомышечных клетках, в присутствии ионов кальция образует комплекс с циркулирующим в крови фактором VII, превращая последний в фактор VIIа. Комплекс фактор VIIа, тканевой тромбопластин превращает фактор X в Xа. Фактор Xа в присутствии ионов кальция на фосфолипидной поверхности связывается с фактором V. Весь этот комплекс действует как протромбиназа, превращая протромбин в тромбин. Субстратом тромбина является фибриноген. Под действием тромбина от фибриногена отщепляются 2 фибринопептида А и 2 фибринопептида В. Образуются фибринмономеры, у каждого из которых имеется 4 свободные связи. Соединяясь этими связями друг с другом вначале парами (димеры), а затем по типу конец к концу и бок к боку (полимеры), формируются волокна фибрина. Образовавшийся фибрин непрочен, его стабилизация происходит под влиянием фактора XIIIа, последний обеспечивает поперечные сшивки между соседними молекулами фибрина.
При ДВС чувствительность к тромбину снижается и в той или иной степени нарушается процесс полимеризации фибрин – мономеров, вследствие чего тромбиновое время удлиняется и тромбин коагулирует уже не весь фибриноген. Установлено, что это нарушение связано с тем, что часть полных и неполных фибрин – мономеров образуют комплексные соединения с фибриногеном и, с ранними продуктами расщепления фибриногена/фибрина плазмином. Эти крупно- и среднемолекулярные растворимые фибрин–мономерные комплексы (РФМК) обозначаются как «заблокированный фибриноген». Они плохо коагулируют под влиянием тромбина.
Факторы II, VII, IX, X синтезируются в печени под влиянием витамина К. При дефиците или потреблении К-витаминзависимых факторов одновременно нарушается внутренний и внешний путь активации.
Из плазменных факторов свертывания лишь фактор VII участвует только во внешнем механизме процесса, в связи с чем при его дефиците удлиняется лишь протромбиновое время.
Факторы XII, XI, IX, VIII и прекалликреин учаcтвуют только во внутреннем механизме активации, в связи с чем при их дефиците нарушаются АЧТВ и аутокоагуляционный тест, а протромбиновое время остается нормальным.
При дефиците факторов X, V, II и I, на которых замыкаются оба механизма свертывания, патология выражается во всех выше перечисленных тестах.
Антикоагулянтная система: На долю АТIII приходится более 75% антисвертывающей активности плазмы. Он оказывает инактивирующее влияние на тромбин, X, IX, XI, XII факторы и калликреин. АTIII является основным кофактором гепарина, поэтому при его снижении гепаринотерапия малоэффективна.
При образовании незначительных концентраций X фактора и тромбина активируется протеин С. Это К-витаминзависимый протеин способен удалять активированные факторы Vа и VIIIа из энзимных комплексов и тем самым лимитировать образование фактора Xа и тромбина. А2-макроглобулин тормозит переход XII фактора в его активную форму. В 1978 году З.С. Баркаган и К.М. Бишевский предложили классификацию физиологических антикоагулянтов, подразделяемых на первичные и вторичные. Первичные синтезируются в организме специально для осуществления этой единственной функции, а вторичные образуются из компонентов другой функциональной направленности – из факторов свертывания, других белков в результате их протеолиза в процессе свертывания крови, фибринолиза и активации других ферментных систем.
Таблица 1. Факторы свертывания крови
Циф-е обозн-е
| Наименование фактора
| Содержание в плазме, г/л
| Минимальный уровень, необходимый для гемостаза
|
|
|
|
| I
| Фибриноген
| 2,0 – 4,0
| 0,8-1,0 г/л
| II
| Протромбин
| Около 0,1
| 40%
| III
| Тканевой тромбопластин
|
| -
| IV
| Ионы кальция
| 0,9-1,2 ммоль/л
| -
| V
| Проакцелерин
| Около 0,01
| 10-15%
| VII
| Проконвертин
| Около 0,05%
| 5-10%
| VIII
| Антигемофильный глобулин
| 0,01-0,02
| 30-35%
| IX
| РТС-фактор,
Фактор Кристмаса
| Около 0,003
| 20-30%
| X
| Фактор Стюарта-Прауэра
| Около 0,1
| 10-20%
| XI
| Плазменный предшественник тромбопластина. РТА-фактор
| Около 0,005
| ?
| XII
| Фактор Хагемана, контактный фактор
| Около 0,03
| Менее 1%
| XIII
| Фибринстабилизирующий фактор Фактор Флетчера (прекалекреин) Фактор Фитцжеральда
| 0,001-0,02
| 2-5%
| Система обеспечивающая расщепление фибрина/фибриногена на мелкие фрагменты называется фибринолитической. Главным компонентом этой системы является плазмин, содержащийся в плазме в виде неактивного фермента плазминогена. Плазминоген синтезируется печенью и в циркулирующей крови присутствует постоянно. Механизм превращения плазминогена в плазмин регулируется активаторами и ингибиторами плазминогена. Его активаторами являются: тканевой активатор плазминогена, урокиназа, фактор Хагемана и др. К каждому активатору плазминогена имеется собственный специфический ингибитор (антиплазминоген). Активный плазмин блокируется системой антиплазминов, самый мощный из них α2 – антиплазмин. Активация фибринолитической системы происходит по внешнему механизму (тканевой активатор плазминогена) и его внутреннему (фактор Хагемана).
Активный плазмин вызывает последовательное, ассиметричное расщепление фибриногена/фибрина. Вначале от их α и b цепей отщепляются низкомолекулярные фрагменты и остается крупномолекулярный фрагмент Х, который еще сохраняет способность под действием тромбина образовывать фибрин (свертываться). Далее под влиянием плазмина фрагмент Х расщепляется на фрагменты У и D, а фрагмент У на фрагменты D и Е.
Крупномолекулярные продукты фибринолиза (фрагменты Х и У) обозначаются в литературе как «ранние» (они как и РФМК, определяются тестами тестами склеивания стафилококков), а фрагменты D и Е – как «поздние».
Повышенное содержание в крови ПДФ свидетельствует о том, что в ней активирован фибринолиз. При подавляющемся большинстве клинических ситуаций такая активация вторична и связана либо с диссеминированным внутрисосудистым свертыванием крови, либо с массивными тромбоэмболиями, а также с интенсивной локальной гемокоагуляцией в органах. Очень часто при ДВС крови повышение уровня ПДФ сочетается с замедлением эуглобулинового лизиса и ХII – зависимого фибринолиза со снижением содержания в крови плазминогена и его активаторов. В этом нет никакого противоречия, ибо фибринолиз с образованием ПДФ идет в тромбах и в микросгустках фибрина, где фиксируется плазминоген и его активаторы. Следствием же этого является интенсивная убыль указанных веществ из циркулирующей крови, вследствие чего их концентрация в плазме снижается. ПДФ влияют на проницаемость и тонус сосудов, свойства эндотелия, ингибируют агрегацию тромбоцитов и самосборку фибрина.
Особенности состояния системы гемокоагуляции при физиологической беременности
По данным литературы и наших исследований в III триместре при физиологической беременности отмечается повышение суммарной активности факторов свертывания крови, составляющих внутренний путь активации гемостаза – VIII, IX, X, XI, XII и как проявление этого укорочение хронометрических тестов (АЧТВ, АВР) (таблица 2).
Уровень фибриногена в конце вышеуказанного триместра увеличивается на 20-30% (в сравнении со средненормативными значениями), а возрастание количества факторов, составляющих внешний путь активации свертывания крови - незначительное, о чем свидетельствуют данные протромбинового комплекса (ПТИ в среднем 100–110%).
Конечный этап свертывания, а именно превращение фибриногена в фибрин, соответствует нормативным показателям у женщин вне беременности. Уровень растворимых фибрин-мономерных комплексов перед родами повышен в среднем в 1,5 раза в сравнении с нормой, а в первые сутки послеродового периода их количество может увеличиваться в среднем на 50% от исходного. Такой уровень РФМК сохраняется в течение 3–4 суток и имеет тенденцию к снижению лишь на 6–7 сутки послеродового периода.
Таблица 2 Динамика показателей гемостаза при физиологической беременности, M±m
Тесты гемостаза
| Этапы исследования
| До родов
| 1 сутки
| 3 сутки
| 5 сутки
| Ht
| 0,31±0,01
| 0,31±0,01
| 0,31±0,01
| 0,32±0,01
| ПТИ, %
| 102,0±0,9
| 102,1±0,6
| 101,7±0,6
| 103,0±0,8
| ТВ, сек
| 14,1±0,2
| 14,3±0,2
| 14,1±0,2
| 14,6±0,2
| ТВ, донор, сек
| 14,7±0.1
| 15,1±0,1
| 14,9±0,1
| 15,2±0,1
| АВСК
| 1,99±0,5
| 1,89±0,5
| 2,11±1,3
| 2,38±1,4
| АЧТВ, сек
| 35,5±0,8
| 33,7±0,8
| 34,5±0,4
| 35,9±0,6
| АЧТВ контроль, сек
| 38,8±0,3
| 38,9±0,3
| 37,9±0,2
| 38,1±0,4
| ОФТ, мг%
| 9,1±1,1
| 14,2±1,2
| 12,8±1,5
| 7,3±0,8
| ХЗФ, мин
| 11,6±0,9
| 28,2±3,5
| 29,7±3,5
| 17,0±2,4
| Фибриноген, г/л
| 3,6±0,1
| 3,8±0,2
| 3,9±0,2
| 3,7±0,1
| Тромбоциты, тыс.
| 233±8,4
| 247±13,1
| 295±12,2
| 283±11,2
| АТ III, %
| 103,9±3,6
| 96,1±1,9
| 97,1±2,4
| 97,6±2.1
| ПДФ, мкг/мл
| 6,3±1,2
| 8,8±1,1
| 4,0±0,7
| 3,2±0,5
| ПДФ, контроль
| 3,3±0,3
| 2,8±0,3
| 3,0±0,3
| 2,8±0,1
| ЛИС, сек
| 89,0±2,5
| 98,3±3,1
| 96,2±4,2
| 84,7±2,3
| ЛИС контроль, сек
| 84,2±0,6
| 80,5±1,1
| 85,6±2,8
| 80,8±1,8
| ИРП, %
| 96,7±2,1
| 83,1±3,4
| 90,9±4,5
| 96,1±3,5
| Д-димеры, нг/л
| Отр.
| Отр.
| Отр.
| Отр.
| Агрегация с АДФ, сек
| 22,0±1,1
| 20,0±0,3
| 23,0±1,0
| 24,0±1,1
| Агрегация с АДФ (контроль), сек
| 28,3±0,4
| 27,9±0,3
| 28,4±0,5
| 28,4±0,4
| Это подтверждает факт повышенной активности свертывающего звена гемостаза и тромбинемии.
В сосудисто–тромбоцитарном звене гемостаза отмечается повышение агрегационной способности тромбоцитов на 20 – 30%, при нормальном их количестве.
Из–за высокой скорости обмена фибриногена в организме беременных, может наблюдаться небольшое увеличение ранних ПДФ по данным клампинг-теста, при отсутствии Д–димеров (поздних продуктов деградации фибрина) на фоне нормальной концентрации плазминогена. Данные изменения расцениваются как умеренная активация фибринолиза.
Уровень АТIII в родовом и послеродовом периодах остается в пределах нормативных значений.
Несмотря на повышенную активность основных прокоагулянтов при физиологической беременности патологической активации гемостаза не выявляется – это достигается в результате сбалансированной и компенсированной работой всех звеньев системы гемостаза, что является уникальной особенностью во время беременности.
Таким образом, физиологические изменения в системе гемостаза относятся к проявлениям общей циркуляторной адаптации организма беременной женщины к гестационному процессу, что и способствует эффективному гемостазу, однако данные физиологические изменения создают фон для срыва адаптационных механизмов при любой критической ситуации во время беременности и родов.
Дата добавления: 2015-11-02 | Просмотры: 650 | Нарушение авторских прав
|