АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

РАЗДЕЛ ПЕРВЫЙ

Прочитайте:
  1. I. Первый период (до 1791 г.)
  2. II. Вычисление продольных разделов тела
  3. II. Первый период (до 1812 г.)
  4. III. Разделы, изученные ранее и необходимые для данного занятия
  5. III. Разделы, изученные ранее и необходимые для данного занятия (базисные знания)
  6. IV. Разделы, изученные ранее и необходимые для данного занятия
  7. S. В первый день пять таблеток 1 раз до еды, затем по 1 таблетке 1 раз в день, до еды, в течении 10 дней.
  8. Амебициды подразделяют (в зависимости от локализации дизентерийных амёб в организме) на несколько групп.
  9. Анализ урока по теме: «Разделение властей»
  10. АТЛАНТ- ПЕРВЫЙ ШЕЙНЫЙ ПОЗВОНОК И ВАШЕ ЗДОРОВЬЕ

 


СТАТИКА

 

 

Основные понятия статики

 

 

В основу каждого раздела механики положен ряд понятий и определений, принята система аксиом, т. е. важнейших положений, многократно подтверждённых практикой. Приступая к изучению статики, следует определить основные понятия, встречающиеся в этом разделе механики.

 

Статикараздел механики, в котором изучают условия равновесия механических систем под действием сил.

 

Массаодна из основных характеристик любого материального объекта, определяющая его инертные и гравитационные свойства.

 

Масса является мерой инертности точки и мерой инертности тела при его поступательном движении. Масса измеряется в кг.

 

Инертностьсвойство материального тела, проявляющееся в сохранении движения, совершаемого им при отсутствии действующих сил, и в постепенном изменении этого движения с течением времени, когда на тело начинают действовать силы.

Материальная точкаточка, имеющая массу.

 

Материальная точка не имеет размеров и обладает способностью взаимодействовать с другими материальными точками.

 

Абсолютно твёрдое теломатериальное тело, в котором расстояние между двумя любыми точками остается неизменным (рис. 1.1).

 

 

 
 

В природе такие тела отсутствуют, так как каждое тело деформируется в результате приложенных воздействий. Однако принятое допущение (абсолютно твёрдое тело) значительно упрощает изучение действия сил на тело и условий, при которых эти силы уравновешиваются. В дальнейшем абсолютно твёрдые тела условлено называть телами.

 

Механическая системалюбая совокупность материальных точек.

 

Движения материальных точек в механической системе взаимозависимы. В механике тело рассматривают как механическую систему, образованную непрерывной совокупностью материальных точек. Тела могут взаимодействовать друг с другом.

 

Механическое действиедействие на данное тело со стороны других тел, которое приводит к изменению скоростей точек этого тела или следствием которого является изменение взаимного положения точек данного тела.

 

Другими словами, при механическом действии тело приобретает механическое движение.

 

Механическое движениеизменение с течением времени взаимного положения тел в пространстве или взаимного положения частей данного тела.

 
 

Таким образом, тело либо деформируется, либо перемещается в пространстве. Деформацию тел изучает наука – сопротивление материалов. Так как в теоретической механике имеют дело с абсолютно твёрдыми телами, то при механическом действии тела изменяют свое положение в пространстве относительно друг друга. В общем случае тело может поступательно перемещаться в пространстве по трём направлениям (параллельно координатным осям OX, OY, OZ) и вращаться относительно этих осей (рис. 1.2).

 

Свободное телотело, на перемещения которого в пространстве не наложено никаких ограничений.

 

Следовательно, свободное тело может осуществлять в системе отсчёта OXYZ шесть движений. Другими словами, тело имеет шесть степеней свободы.

Тело может находиться в состоянии покоя, которое является частным случаем механического движения, когда скорости точек рассматриваемого тела равны нулю. Если тело покоится, то говорят, что оно находится в состоянии равновесия.

 

Равновесие механической системысостояние механической системы, при котором её точки под действием приложенных сил остаются в покое по отношению к рассматриваемой системе отсчёта.

Система отсчётасистема координат, связанная с телом, по отношению к которому определяется положение других тел (механических систем) в разные моменты времени.

 

Важнейшим понятием в теоретической механике является понятие силы.

 

Сила – векторная величина, являющаяся мерой механического действия одного тела на другое.

 


Сила как вектор определяется тремя элементами: числовым значением (модулем), направлением и точкой приложения. Графически силу изображают направленным прямолинейным отрезком (вектором), совпадающим по направлению с направлением силы (рис. 1.3).

F
Длина этого отрезка выражает в выбранном масштабе модуль силы, его начало совпадает с точкой приложения силы. Иногда удобно изображать силу так, что точкой её приложения является конец вектора силы – острие стрелки. Силу и её модуль обозначают следующим образом: F, P, Q – сила; F, P, Q – модуль силы. В технической литературе используют и другой вид обозначения силы: , , .

 

Линия действия силы – прямая линия, вдоль которой направлен вектор, изображающий силу.

 

Простейшим примером силы является сила тяжести, с которой тело притягивается к Земле.

Сила тяжестисила, действующая на материальную точку вблизи земной поверхности, равная произведению массы m этой точки на ускорение g свободного падения в вакууме.

G = m· g.

 

Сила тяжести G прикладывается в центре С тяжести тела и направлена к центру Земли (по вертикали). В неподвижной (НСО) относительно Земли системе отсчёта OXYZ сила тяжести тела изображается так, как это показано на рис. 1.4.


Если речь идет о величине (модуле) силы тяжести тела, то употребляют термин «вес тела».

 

Вес тела – сумма модулей сил тяжести, действующих на частицы этого тела.

 

Вес G тела находят по формуле

G = m·g.

Силы имеют различную физическую природу, например, сила давления пара, сила притяжения наэлектризованных тел и т. д. В теоретической механике не рассматривают физическую природу сил, здесь важны только величина, направление и точка приложения силы. Модуль силы измеряют в ньютонах [H].

Силы, действующие на механическую систему, делят на две группы: внешние и внутренние.

Внешняя силасила, действующая на какую-либо точку механической системы со стороны тел, не принадлежащих рассматриваемой механической системе.

 

Внешние силы принято обозначать символами: F iE, R iE.

 

Внутренние силысилы, действующие на какие-либо точки механической системы со стороны других точек, принадлежащих рассматриваемой механической системе.

 

Внутренние силы принято обозначать символом R iJ.

 

Система силлюбая совокупность сил, действующих на механическую систему.

 

Систему сил принято обозначать (F 1,…, F n).

Уравновешенная система силсистема сил, которая будучи приложена к свободному телу, находящемуся в равновесии, не выводит его из этого кинематического состояния.

Уравновешивающая система силсистема сил, которая вместе с заданной другой системой сил составляет уравновешенную систему сил.

Эквивалентные системы силдве или несколько систем сил, имеющих одну и ту же уравновешивающую систему сил.

 

Эквивалентные системы сил приводят свободное тело в одно и то же кинематическое состояние. Для обозначения эквивалентности систем сил используют знак «~».

Равнодействующая системы силсила, эквивалентная данной системе сил.

Плоская система силсистема сил, линии действия которых расположены в одной плоскости.

Сходящаяся система силсистема сил, линии действия которых пересекаются в одной точке.

 

Из курса физики известно, что равнодействующая сходящейся системы сил графически определяется по правилу силового многоугольника (рис. 1.5).

При построении силового многоугольника равнодействующая R соединяет начало первого вектора с концом последнего. Силовой многоугольник не замкнут.

Таким образом, сходящаяся система сил имеет равнодействующую R, определяемую векторным равенством:

R = F 1 +…+ F 4.

В общем случае для системы сходящихся сил (F 1,…, F n) используют векторное равенство R = Σ F i.


 


Уравновешенную систему сил графически изображают замкнутым силовым многоугольником, в котором конец последнего вектора приходит в начало первого вектора (рис. 1.6).

Такую систему сил описывают равенством R = F 1 +…+ F 4 = 0. В общем случае для уравновешенной системы сил (F 1,…, F n) справедливо равенство R = Σ F i = 0.

Силы делят на сосредоточенные и распределённые.

Сосредоточенная силасила, приложенная к телу в какой-либо одной его точке.

Распределённые силысилы, действующие на все точки некоторой части линии, поверхности или объёма.

 

Понятие о сосредоточенной силе является условным, так как практически приложить силу в точке нельзя. Силу, которую в механике рассматривают как сосредоточенную, представляет собой равнодействующую некоторой системы распределённых сил.

Распределённые силы характеризуются величиной q интенсивности распределения силы, т. е. величиной силы на единицу объёма, поверхности или длины линии. Интенсивность распределения силы может иметь следующие размерности: Н/м3; Н/м2; Н/м. На тела в основном действуют параллельные и сходящиеся распределённые силы. К параллельным силам, распределённым по объёму, относятся силы тяжести частиц тела.

Поскольку все аксиомы и теоремы статики формулируются для сосредоточенных сил, необходимо рассмотреть способы перехода от распределённых сил к сосредоточенным силам.

Рассмотрим замену линейно распределённых сил сосредоточенной силой.


Равнодействующую распределённых на линии параллельных сил постоянной интенсивности q определяют по формуле Q = q ×L, где L – длина балки (рис. 1.7).

Равнодействующая распределённых сил (сосредоточенная сила) прикладывается к балке под центром тяжести площади прямоугольника.


В инженерной практике часто применяют нагрузку, интенсивность которой изменяется по закону треугольника (рис. 1.8).

 

Равнодействующую параллельных распределённых сил на линии с интенсивностью, изменяющейся по закону треугольника, определяют по формуле Q = 0,5 q max×L, где q max – наибольшая интенсивность. Линия действия сосредоточенной силы Q смещена в сторону наибольшей интенсивности и проходит через центр тяжести площади треугольника.


В более сложных случаях распределённые нагрузки заменяют несколькими сосредоточенными силами. Пример такой замены приведен на рис. 1.9.

Модули Q1, Q2 сил Q 1, Q 2 определяют по формулам:

Q1 = q1·L; Q2 = 0,5·(q2 – q1)·L.


Дата добавления: 2015-09-27 | Просмотры: 464 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.009 сек.)