АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Световая и контрастная чувствительность глаза. Механизм адаптации к свету и темноте. Слияние мельканий и последовательные образы.
Темновая адаптация выражается в повышении чувствительности зрительного анализатора (сенситизация), световая адаптация — в снижении чувствительности глаза к свету. Основу механизмов световой и темно-вой адаптации составляют протекающие в колбочках и палочках фотохимические процессы, которые обеспечивают расщепление (на свету) и ресинтез (в темноте) фоточувствительных пигментов, а также процессы функциональной мобильности — включение и выключение рецепторных элементов сет- чатки. Кроме того, адаптацию определяют некоторые нейронные механизмы, и прежде всего процессы, происходящие в нервных элементах сетчатки, в частности способы подключения фоторецепторов к ганглиозным клеткам с участием горизонтальных и биполярных клеток. В темноте возрастает число рецепторов, подключенных к одной биполярной клетке, и большее их число конвергирует на ганглиозную клетку. При этом расширяется рецептивное поле каждой биполярной и, естественно, ганглиозной клеток, что улучшает зрительное восприятие. Включение же горизонтальных клеток в свою очередь регулируется ЦНС.
Снижение тонуса симпатической нервной системы (десимпатизация глаза) уменьшает скорость темновой адаптации, а введение адреналина оказывает противоположный эффект. Раздражение ретикулярной формации ствола мозга повышает частоту импульсов в волокнах зрительных нервов. Влияние ЦНС на адаптивные процессы в сетчатке подтверждается также тем, что чувствительность неосвещенного глаза к свету изменяется при освещении другого глаза и при действии звуковых, обонятельных или вкусовых раздражителей.
Кроме световой и темновой адаптации, существует цветовая адаптация. Наиболее быстрая и резкая адаптация (снижение чувствительности) происходит при действии сине-фиолетового раздражителя. Красный раздражитель занимает среднее положение.
Зрительные контрасты и последовательные образы. Зрительные ощущения могут продол- жаться и после того, как прекратилось раздражение. Такое явление получило название последовательных образов. Зрительные контрасты — это измененное восприятие раздражителя в зависимости от окружающего светового или цветового фона. Существуют понятия светового и цветового зрительных контрастов. Явление контраста может проявляться в преувеличении действительной разницы между двумя одновременными или последовательными ощущениями, поэтому различают одновременные и последовательные контрасты. Серая полоска на белом фоне кажется темнее такой же полоски, расположенной на темном фоне. Это пример одновременного светового контраста. Если рассматривать серый цвет на красном фоне, то он кажется зеленоватым, а если рассматривать серый цвет на синем фоне, то он приобретает желтый оттенок — это явление одновременного цветового контраста. Последовательный цветовой контраст заключается в изменении цветового ощущения при переводе взгляда на белый фон. Так, если долго смотреть на окрашенную в красный цвет поверхность, а затем перевести взор на белую, то она приобретает зеленоватый оттенок. Причиной зрительного контраста являются процессы, которые осуществляются в фото-рецепторном и нейрональном аппаратах сетчатки. Основу составляет взаимное торможение клеток, относящихся к разным рецептивным полям сетчатки и их проекциям в корковом отделе анализаторов. 87. Цветовое зрение и теория цветоощущения. Цветовая слепота. Восприятие пространства: острота и поле зрения, оценка расстояния и величины предмета. Зрение обоими глазами.
Цветовое зрение — способность зрительного анализатора реагировать на изменения длины световой волны с формированием ощущения цвета. Определенной длине волны электромагнитного излучения соответствует ощущение определенного цвета. Так, ощущение красного цвета соответствует действию света с длиной волны в 620—760 нм, а фиолетового — 390—450 нм; остальные цвета спектра имеют промежуточные параметры. Восприятие цвета обусловлено в основном процессами, происходящими в фоторецепторах. Наибольшим признанием пользуется трехкомпонентная теория цветоощущения Ломоносова—Юнга—Гельмголь-ца—Лазарева, согласно которой в сетчатке глаза имеются три вида фоторецепторов — колбочек, раздельно воспринимающих красный, зеленый и сине-фиолетовые цвета. Три типа цветочувствительных колбочек были названы модуляторами, колбочки, которые возбуждались при изменении яркости света (четвертый тип), — доминатора-ми. Впоследствии методом микроспектрофо-тометрии удалось установить, что даже одиночная колбочка может поглощать лучи различной длины волны и, следовательно, обеспечивать восприятие предметов различного цвета. Обусловлено это наличием в каждой колбочке различных пигментов, чувствительных к волнам света различной длины. В восприятии цвета определенную роль играют и процессы, протекающие в нейронах различных уровней зрительного анализатора (включая сетчатку), которые получили название цветооппонентных нейронов. При действии на глаз излучений одной части спектра они возбуждаются, а другой — тормозятся. Такие нейроны участвуют в кодировании информации о цвете.
Наблюдаются аномалии цветового зрения, которые могут проявляться в виде частичной или полной цветовой слепоты. Людей, вообще не различающих цветов, называют ахроматами. Частичная цветовая слепота имеет место у 8—10 % мужчин и 0,5 % женщин. Полагают, что цветослепота связана с отсутствием у мужчин определенных генов в половой непарной Х-хромосоме. Различаются три вида частичной цветослепоты. П р о т а н опия (дальтонизм) — слепота в основном на красный цвет. Этот вид цветослепоты впервые был описан в 1794 г. физиком Дж. Дальтоном, у которого наблюдался этот вид аномалии. Людей с таким видом аномалии называют «краснослепыми». Дейтеранопия— понижение восприятия зеленого цвета. Таких людей называют «зеленослепыми». Тританопия — редко встречающаяся аномалия. При этом люди не воспринимают синий и фиолетовый цвета; их называют «фиолетовослепыми». С точки зрения трех-компонентной теории цветового зрения каждый из видов аномалии является результатом отсутствия одного из трех колбочковых цве-товоспринимающих субстратов. Для диагностики расстройства цветоощущения пользуются цветными таблицами Рабкина, а также специальными приборами, получившими название аномалоскопов. Выявление различных аномалий цветового зрения имеет большое значение при определении профессиональной пригодности человека для различных видов работ (водители, летчики, художники и др.).
Наиболее тонкая оценка мелких деталей предмета обеспечивается в том случае, если изображение падает на желтое пятно, которое локализуется в центральной ямке сетчатки глаза, так как в этом случае имеет место наибольшая острота зрения. Это объясняется тем, что в области желтого пятна располагаются только колбочки; их размеры наименьшие, и каждая колбочка контактирует с малым числом нейронов, что повышает остроту зрения. Острота зрения определяется наименьшим углом зрения, под которым глаз еще способен видеть раздельно две точки. Нормальный глаз способен различать две светящиеся точки под углом зрения в 1 мин. Острота зрения такого глаза принимается за единицу.
Острота зрения зависит от оптических свойств глаза, структурных особенностей сетчатки и работы нейрональных механизмов проводникового и центрального отделов зрительного анализатора. Определение остроты зрения осуществляют с помощью буквенных или различного вида фигурных стандартных таблиц. Крупные объекты в целом и окружающее пространство воспринимаются в основном за счет периферического зрения, обеспечивающего большое поле зрения.
Поле зрения — пространство, которое можно видеть фиксированным глазом. Различают отдельно поле зрения левого и правого глаз, а также общее поле зрения для двух глаз. Величина поля зрения у людей зависит от глубины положения глазного яблока и формы надбровных дуг и носа. Границы поля зрения обозначают величиной угла, образуемого зрительной осью глаза и лучом, проведенным к крайней видимой точке через узловую точку глаза, к сетчатке. Поле зрения неодинаково в различных меридианах (направлениях). Книзу — 70°, кверху — 60°, кнаружи — 90°, кнутри — 55°. Ахроматическое поле зрения больше хроматического в силу того, что на периферии сетчатки нет рецепторов (колбочек), воспринимающих цвет. В свою очередь цветовое поле зрения неодинаково для различных цветов. Самое узкое поле зрения для зеленого, желтого, больше для красного, еще больше для синего цветов. Величина поля зрения изменяется в зависимости от освещенности. Ахроматическое поле зрения в сумерках увеличивается, на свету уменьшается. Хроматическое поле зрения, наоборот, на свету увеличивается, в сумерках уменьшается. Это зависит от процессов мобилизации и демобилизации фоторецепторов (функциональная мобильность). При сумеречном зрении увеличение количества функционирующих палочек, т.е. их мобилизация, приводит к увеличению ахроматического поля зрения. В то же самое время уменьшение количества функционирующих колбочек — их демобилизация — ведет к уменьшению хроматического поля зрения (П.Г.Снякин). Оценка расстояния Восприятие глубины пространства и оценка расстояния, возможны как при зрении одним глазом (монокулярное зрение), так и обоими глазами (бинокулярное зрение). При бинокулярном зрении оценка расстояния гораздо точнее. В оценке близких расстояний при монокулярном зрении имеет значение явление аккомодации. При взгляде на предмет не возникает ощущения двух предметов, несмотря на то, что имеется два изображения на двух сетчатках. При зрении обоими глазами в восприятии эти два изображения сливаются в одно. Диспарация имеет значение в оценке расстояния и, следовательно, в видении глубины. Человек способен заметить изменение глубины, создающее сдвиг изображения на сетчатках на несколько угловых секунд. 88. Слуховой анализатор. Строение и функции наружного, среднего и внутреннего уха. Механизм передачи звуковых колебаний. Электрические явления в улитке.
Адекватным раздражителем для слухового анализатора являются звуки, т.е. колебательные движения частиц упругих тел, распространяющихся в виде волн в самых различных средах, включая воздушную, и воспринимающиеся ухом. Звуковые волновые колебания (звуковые волны) характеризуются частотой и амплитудой. Частота звуковых волн определяет высоту звука. Человек различает звуковые волны с частотой от 20 до 20 000 Гц.Периферическим отделом слухового анализатора, превращающим энергию звуковых волн в энергию нервного возбуждения, являются рецепторные волосковые клетки кортиева органа (орган Корти), находящегося в улитке. Слуховые рецепторы (фонорецепторы) относятся к механорецепторам, являются вторичными и представлены внутренними и наружными волосковыми клетками.
Внутреннее (звуковоспринимающий аппарат), а также среднее (звукопередающий аппарат) и наружное ухо (звукоулавливающий аппарат) объединяются в понятие орган слуха.
Наружное ухо за счет ушной раковины обеспечивает улавливание звуков, концентрацию их в направлении наружного слухового прохода и усиление интенсивности звуков. Кроме того, структуры наружного уха выполняют защитную функцию, охраняя барабанную перепонку от механических и температурных воздействий внешней среды.
Среднее ухо (звукопроводящий отдел) представлено барабанной полостью, где расположены три слуховые косточки: молоточек, наковальня и стремечко. От наружного слухового прохода среднее ухо отделено барабанной перепонкой. Рукоятка молоточка вплетена в барабанную перепонку, другой его конец сочленен с наковальней, которая в свою очередь сочленена со стремечком. Стремечко прилегает к мембране овального окна. Площадь барабанной перепонки (70 мм2) значительно больше площади овального окна (3,2 мм2), благодаря чему происходит усиление давления звуковых волн на мембрану овального окна примерно в 25 раз. Рычажный механизм косточек уменьшает амплитуду звуковых волн примерно в 2 раза — следовательно, происходит такое же усиление звуковых волн на овальном окне. Таким образом, среднее ухо усиливает звук примерно в 60—70 раз. Если же учитывать усиливающий эффект наружного уха, то эта величина вырастает в 180—200 раз. Среднее ухо имеет специальный защитный механизм, представленный двумя мышцами — мышцей, натягивающей барабанную перепонку, и мышцей, фиксирующей стремечко. Степень сокращения этих мышц зависит от силы звуковых колебаний. При сильных звуковых колебаниях мышцы ограничивают амплитуду колебаний барабанной перепонки и движение стремечка, предохраняя тем самым ре-цепторный аппарат внутреннего уха от чрезмерного возбуждения и разрушения. При мгновенных сильных раздражениях (удар в колокол) этот защитный механизм не успевает срабатывать. Сокращение обеих мышц барабанной полости осуществляется по механизму безусловного рефлекса, который замыкается на уровне стволовых отделов мозга. В барабанной полости поддерживается давление, равное атмосферному, что очень важно для адекватного восприятия звуков. Эту функцию выполняет евстахиева труба, которая соединяет полость среднего уха с глоткой. При глотании труба открывается, вентилируя полость среднего уха и уравнивая давление в нем с атмосферным
Внутреннее ухо представлено улиткой — спирально закрученным костным каналом, имеющим 2,5 завитка, который разделен основной мембраной и мембраной Рейснера на три узкие части (лестницы). Верхний канал (вестибулярная лестница) начинается от овального окна, соединяется с нижним каналом (барабанная лестница) через геликотре-му (отверстие в верхушке) и заканчивается круглым окном. Оба канала представляют собой единое целое и заполнены перилим-фой, сходной по составу со спинномозговой жидкостью. Между верхним и нижним каналами находится средний (средняя лестница). Он изолирован и заполнен эндолимфой. Внутри среднего канала на основной мембране расположен собственно звуковосприни-мающий аппарат — орган Корти (кортиев орган) с рецепторными клетками, представляющий периферический отдел слухового анализатора.
Основная мембрана вблизи овального окна по ширине составляет 0,04 мм, затем по направлению к вершине она постепенно расширяется, достигая у геликотремы 0,5 мм. Над кортиевым органом лежит текториаль-ная (покровная) мембрана соединительнотканного происхождения, один край которой закреплен, второй — свободен. Волоски наружных и внутренних волосковых клеток соприкасаются с текториальной мембраной. При этом энергия звуковых волн трансформируется в нервный импульс.
Процессы эти начинаются с попадания звуковых волн в наружное ухо; они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебание перилимфы вестибулярной (верхней) лестницы. Эти колебания через гелико-трему передаются перилимфе барабанной (нижней) лестницы и доходят до круглого окна, смещая его мембрану по направлению к полости среднего уха.
Колебания перилимфы передаются также на эндолимфу перепончатого (среднего) канала, что воздействует на основную мембрану, состоящую из отдельных волокон, натянутых, как струны рояля. Волокна мембраны приходят в колебательные движения вместе с рецепторными клетками кортиева органа, расположенными на них. При этом волоски рецепторных клеток контактируют с тектори-альной мембраной, реснички волосковых клеток деформируются. Возникает вначале рецепторный потенциал, а затем потенциал действия (нервный импульс), который далее проводится по слуховому нерву и передается в другие отделы слухового анализатора.
Основные электрические явления в улитке. В улитке можно зарегистрировать пять различных электрических феноменов.
1. Мембранный потенциал слуховой ре-цепторной клетки характеризует состояние покоя.
2. Потенциал эндолимфы, или эндокохле-арный потенциал, обусловлен различным уровнем окислительно-восстановительных процессов в каналах улитки, в результате чего возникает разность потенциалов (80 мВ) между перилимфой среднего канала улитки (потенциал имеет положительный заряд) и содержимым верхнего и нижнего каналов. Эндокохлеарный потенциал оказывает влияние на мембранный потенциал слуховых рецепторных клеток, создавая в них критический уровень поляризации, при котором незначительное механическое воздействие во время контакта волосковых рецепторных клеток с текториальной мембраной приводит к возникновению возбуждения.
3. Микрофонный эффект улитки был получен в эксперименте на кошках. Электроды, введенные в улитку, соединялись с усилителем и громкоговорителем. Если рядом с ухом кошки произносили различные слова, то их можно услышать, находясь у громкоговорителя в другом помещении. Этот потенциал генерируется на мембране волосковой клетки в результате деформации волосков при соприкосновении с текториальной мембраной. Частота микрофонных потенциалов соответствует частоте звуковых колебаний, а амплитуда потенциалов в определенных границах пропорциональна интенсивности звуков речи. Звуковые колебания, действующие на внутреннее ухо, приводят к тому, что возникающий микрофонный эффект накладывается на эндокохлеарный потенциал и вызывает его модуляцию.
Микрофонный и суммационный потенциалы связывают с деятельностью волоско-вых клеток и рассматривают как рецептор-ный потенциал. Потенциал действия слухового нерва регистрируется в его волокнах, частота импульсов соответствует частоте звуковых волн, если она не превышает 1000 Гц. При действии более высоких тонов частота импульсов в нервных волокнах не возрастает, так как 1000 имп/с — это почти максимально возможная частота генерации импульсов в волокнах слухового нерва. Потенциал действия в нервных окончаниях регистрируется через 0,5—1,0 мс после возникновения микрофонного эффекта, что свидетельствует о синап-тической передаче возбуждения с волосковой клетки на волокно слухового нерва. 89. Механизм восприятия частоты и силы звука. Звуковые ощущения: тональность звука, слуховая чувствительность, громкость звука. Адаптация. Бинауральный слух.
Восприятие звуков различной высоты (частоты), согласно резонансной теории Гельмгольца, обусловлено тем, что каждое волокно основной мембраны настроено на звук определенной частоты. Так, звуки низкой частоты воспринимаются длинными волнами основной мембраны, расположенными ближе к верхушке улитки; звуки высокой частоты воспринимаются короткими волокнами основной мембраны, расположенными ближе к основанию улитки. При действии сложного звука возникают колебания различных волокон мембраны.
В современной интерпретации резонансный механизм лежит в основе теории места, согласно которой в состояние колебаний вступает вся мембрана. Однако максимальное отклонение основной мембраны улитки происходит только в определенном месте. При увеличении частоты звуковых колебаний максимальное отклонение основной мембраны смещается к основанию улитки, где располагаются более короткие волокна основной мембраны, — у коротких волокон возможна более высокая частота колебаний. Возбуждение волосковых клеток именно этого участка мембраны при посредстве медиатора передается на волокна слухового нерва в виде определенного числа импульсов, частота следования которых ниже частоты звуковых волн (лабильность нервных волокон не превышает 800—1000 Гц). Частота воспринимаемых звуковых волн достигает 20 000 Гц. Таким способом осуществляется пространственный тип кодирования высоты частоты звуковых сигналов.
При действии тонов примерно до 800 Гц, кроме пространственного кодирования, происходит еще и временное (частотное) кодирование, при котором информация передается также по определенным волокнам слухового нерва, но в виде импульсов (залпов), частота следования которых повторяет частоту звуковых колебаний. Отдельные нейроны на разных уровнях слуховой сенсорной системы настроены на определенную частоту звука, т.е. каждый нейрон имеет свой специфический частотный порог, свою определенную частоту звука, на которую реакция нейрона максимальна. Таким образом, каждый нейрон из всей совокупности звуков воспринимает лишь определенные достаточно узкие участки частотного диапазона, которые не совпадают между собой, а совокупности нейронов воспринимают весь частотный диапазон слышимых звуков, что и обеспечивает полноценное слуховое восприятие.
Правомерность этого положения подтверждается результатами протезирования слуха человека, когда электроды вживляют в слуховой нерв, а его волокна раздражают электрическими импульсами разных частот, которые соответствуют звукосочетаниям определенных слов и фраз, обеспечивая смысловое восприятие речи. Тональность (частота) звука Человек может воспринимать звуки с частотой колебания от 16 до 20 000 Гц. Этот диапазон соответствует 10—11 октавам. Верхняя граница воспринимаемых звуков зависит от возраста: чем человек старше, тем она ниже; старики часто не слышат высоких тонов (например, звука, издаваемого сверчком). У многих животных верхняя граница слуха лежит значительно выше: у собаки, например, удается получить условные рефлексы на очень высокие, неслышимые человеком звуки. Различение частоты звука характеризуется тем минимальным различием по частоте двух звуков, которое еще улавливается человеком. При низких и средних частотах человек способен заметить различия в 1—2 Гц. Встречаются люди с абсолютным слухом: они способны точно узнавать и обозначать любой звук даже при отсутствии звука сравнения.
Слуховая чувствительность. Минимальную силу звука, слышимого человеком в половине случаев его предъявления, называют абсолютной слуховой чувствительностью. Установлено, что пороги слышимости сильно изменяются в зависимости от частоты звука.
В области частот от 1000 до 4000 Гц слух человека обладает максимальной чувствительностью. В этих пределах слышен звук, имеющий ничтожную энергию порядка 1*10-12 Втм2 (1 * 1 0-9 эргс-см2). При звуках ниже 1000 и выше 4000 Гц чувствитель- ность резко уменьшается: например, при 20 и при 20 000 Гц пороговая энергия звука должна быть около 1*10-3 Втм2 (1 эргс-см3) (нижняя кривая AEFGD на 225).
При увеличении силы звука неизменной частоты можно дойти до такой силы, когда звук вызывает неприятное ощущение давления и даже боли в ухе. Звуки такой силы дадут, очевидно, верхний предел слышимости (кривая ABCD на 225) и ограничат область слухового восприятия. Внутри этой области лежат и так называемые речевые поля, в пределах которых по частоте и интенсивности распределяются звуки речи
Д. Определение локализации источника звука возможно с помощью бинаурального слуха — способности слышать одновременно двумя ушами. Благодаря бинауральному слуху человек способен более точно локализовать источник звука, чем при моноауральном слухе, и определять направление звука. Для высоких звуков определение их источника обусловлено разницей силы звука, поступающего к обоим ушам, вследствие различной их удаленности от источника звука. Для низких звуков важной является разность во времени между приходом одинаковых фаз звуковой волны к обоим ушам.
Определение местоположения звучащего объекта осуществляется либо путем восприятия звуков непосредственно от звучащего объекта (первичная локализация), либо путем восприятия отраженных от объекта звуковых волн (вторичная локализация, или эхолокация). При помощи эхолокации ориентируются в пространстве некоторые животные (дельфины, летучие мыши).
Е. Слуховая адаптация — изменение слуховой чувствительности в процессе действия звука. Она складывается из соответствующих изменений функционального состояния всех отделов слухового анализатора. Ухо, адаптированное к тишине, обладает более высокой чувствительностью к звуковым раздражениям (слуховая сенситизация). При длительном слушании слуховая чувствительность снижается. Большую роль в слуховой адаптации играет ретикулярная формация, которая не только изменяет активность проводникового и коркового отделов слухового анализатора. 90. Вестибулярный аппарат, его строение и функции. Рецепция положения и движения тела. Статические и статокинетические рефлексы вестибулярного аппарата.
Вестибулярный анализатор анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения тела, а также при изменении положения головы в пространстве. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры. Среди вестибулярных реакций на первом месте находятся статистические и статокинетические реакции, обеспечивающие сохранение равновесия при изменении положения тела и его частей или при возникающих ускорениях во время перемещения тела в пространстве. В осуществлении этих реакций участвуют также и проприорецепторы мышц.
Рецепторы статолитовых органов и полукружных каналов:
Вестибулярный орган состоит из статолитового аппарата и трех полукружных каналов, расположенных во внутреннем ухе в трех взаимно перпендикулярных плоскостях: фронтальной, сагиттальной и горизонтальной. Возбуждающим фактором для вестибулорецепторов, представленных волосковыми клетками, является наклон волосков вследствие смещения отолитовой мембраны при линейных ускорениях. Рецепторные клетки, находящиеся в ампулах, возбуждаются при угловых ускорениях вследствие движения эндолимфы по полукружным каналам. Вестибулорецепторы относятся к вторичночувствующим и связаны через синапсы с афферентными волокнами нейронов вестибулярного ганглия, расположенного в височной кости. Вестибулярные ганглии и ядра: От вестибулярных ганглиев волокна вестибулярного нерва направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, поступают к нейронам бульбарного вестибулярного комплекса: предверное верхнее ядро Бехтерева, предверное латеральное ядро Дейтерса, ядро Швальбе. Из вестибулярных ядер возбуждения направляются по вестибулоспинальному тракту к мотонейронам мышц-разгибателей; непосредственно к мотонейронам шейного отдела спинного мозга; к глазодвигательным ядрам и мозжечку; к ретикулярной формации и через таламус к задней центральной извилине коры большого мозга. Функциональные связи между вышеуказанными структурами обеспечивают не только поддержание позы человека (сохранение равновесия), но и координацию двигательных актов при выполнении целенаправленной деятельности.
Статические и статокинетические рефлексы: Эти рефлексы способствуют сохранению позы, в их осуществлении большое значение имеет продолговатый и средний мозг.
Статические рефлексы возникают при изменении положения тела или его частей в пространстве: 1) при изменении положения головы в пространстве — это так называемые лабиринтные рефлексы. возникающие в результате раздражения рецепторов вестибулярного аппарата; 2) при изменении положения головы по отношению к туловищу — шейные рефлексы, с проприорецепторов мышц шеи и 3) при нарушении нормальной позы тела — выпрямительные рефлексы с рецепторов кожи, вестибулярного аппарата и сетчатки глаз. Например, при отклонении головы назад повышается тонус мышц-разгибателей спины, а при наклоне вперед — тонус сгибателей (лабиринтный рефлекс). Выпрямительные рефлексы — это последовательные сокращения мышц шеи и туловища которые обеспечивают возвращение тела в вертикальное положение теменем кверху. У человека они проявляются, например, во время ныряния.
Статокинетические рефлексы компенсируют отклонения тела при ускорении или замедлении прямолинейного движения, а также при вращениях. Например, при быстром подъеме усиливается тонус сгибателей, и человек приседает, а при быстром спуске усиливается тонус разгибателей, и человек выпрямляется — это так называемый лифтный рефлекс. При вращении тела реакции противовращения проявляются в отклонении головы, тела и глаз в сторону, противоположную движению. Движение глаз со скоростью вращения тела, но в противоположную сторону и быстрое возвращение в исходное положение — нистагм глаз — обеспечивают сохранение изображения внешнего мира на сетчатке глаз и тем самым зрительную ориентацию. 91. Обонятельный, вкусовой и висцеральный анализаторы. Классификация интерорецепторов, их роль в поддержании гомеостаза.
Общей особенностью обонятельного и вкусового анализаторов является их способность к анализу внешних химических стимулов и формированию соответствующих обонятельных и вкусовых ощущений. Хемочувствительность рецепторов связана с высокой специфичностью и избирательностью по отношению к молекулам некоторых веществ. Постоянно действующий химический стимул достаточно быстро приводит к снижению его восприятия. Наконец, любое пищевое или непищевое вещество, попадающее в ротовую полость, неизбежно несет с собой и запаховый стимул.
Обонятельные рецепторы расположены главным образом в верхней носовой раковине. Они являются первичными биполярными сенсорными клетками, имеющими два отростка: аксон и дендрит, несущий реснички. Запаховое вещество, попадая в носовую полость, вступает в контакт с мембраной ресничек. Сенсорная клетка может реагировать на несколько пахучих веществ, по которым можно построить спектр ответов одиночной обонятельной клетки. Аксоны этих клеток, направляются в обонятельную луковицу и оканчиваются на первичных дендритах отдельной митральной клетки обонятельной луковицы. Импульсы от обонятельных луковиц также поступают в гиппокамп и через амигдалярный комплекс к вегетативным ядрам гипоталамуса. Вкусовые рецепторы - специализированные сенсорные клетки, наряду с опорными и базальными клетками входящие в состав вкусовых почек. Всего у человека около 2000 вкусовых почек, которые располагаются на вкусовых сосочках языка, имеющих три разные формы: грибовидные, желобоватые и листовидные.
Растворенные в воде вещества, попадающие на поверхность языка, диффундируют через пору вкусовых почек, которые образуют наружные концы сенсорных клеток. Сенсорные клетки относятся к вторичночувствующим рецепторам и отвечают на химическое раздражение формированием рецепторного потенциала. Рецепторный потенциал через синапсы вызывает возбуждение в афферентных волокнах черепных нервов, которые проводят его в мозг.
Проводниковая и центральная часть вкусового анализатора. Афферентные волокна, проводящие возбуждения от вкусовых рецепторов, представлены нервом — барабанной струной (ветвь лицевого нерва), которая иннервирует переднюю и боковые части языка, а также языкоглоточным нервом, иннервирующим заднюю часть языка. Афферентные вкусовые волокна объединяются в солитарный тракт, который заканчивается в соответствующем ядре продолговатого мозга. В нем волокна образуют синапсы с нейронами второго порядка, аксоны которых направляются к вентральному таламусу. Аксоны нейронов третьего порядка проходят через внутреннюю капсулу таламуса и оканчиваются в постцентральной извилине коры большого мозга. В этой области выявлены высокоспецифичные вкусовые нейроны, реагирующие на раздражение веществами, обладающими одним вкусовым качеством. ВИСЦЕРАЛЬНЫЙ АНАЛИЗАТОР
Огромная роль в интегральном функционировании сенсорных систем принадлежит интерорецепторам. Они воспринимают различные изменения внутренней среды организма и рефлекторно через ЦНС и вегетативный отдел нервной системы обеспечивают регуляцию работы всех внутренних органов, взаимосвязь и координацию их деятельности, направленную на поддержание гомеостаза и формирование защитно-приспосо-бительных реакций. Типичными в этом отношении являются рефлексы Геринга и Брейера (саморегуляция дыхания), рефлексы с прессе- и хеморецепторов каротидного синуса, рефлекторное выделение желудочного сока, рефлекторные акты мочеиспускания и дефекации, рефлекторные кашель и рвота и др.
Морфологами описаны разнообразные интероцепторы, которые представлены свободными нервными окончаниями (дендриты нейронов спинальных ганглиев или клеток Догеля II типа периферических ганглиев вегетативной нервной системы), инкапсулированными [пластинчатые тельца (тельца Фатера-Пачини), колбы Краузе)], расположенными на особых гломусных клетках (рецепторы каротидного и аортального клубочков).
Механорецепторы реагируют на изменение давления в полых органах и сосудах, их растяжение и сжатие. Хеморецепторы сообщают ЦНС об изменениях химизма органов и тканей. Их роль особенно велика в рефлекторном регулировании и поддержании постоянства внутренней среды организма.
Возбуждение хеморецепторов головного мозга может быть вызвано высвобождением из нервных окончаний его структур гистамина, индольных соединений, изменением содержания в желудочках двуокиси углерода и другими факторами. Рецепторы каротид-ных клубочков реагируют на недостаток в крови кислорода, на снижение величины рН (в пределах 6,9—7,6) и повышение напряжения углекислоты.
Терморецепторы ответственны за начальный, афферентный этап процесса терморегуляции. Сравнительно малоисследованными остаются пока осморецепторы, они обнаружены в интерстициальной ткани вблизи капилляре^
Проводниковый отдел висцерального анализатора представлен в основном блуждающим, чревным и тазовым нервами. Блуждающий нерв передает афферентное влияние в ЦНС по тонким волокнам с малой скоростью от практически всех органов грудной и брюшной полости, чревный нерв — от желудка, брыжейки, тонкого кишечника, а тазовый от органов малого таза. В составе этих нервов имеются как быстро-, так и медленно-проводящие волокна. Импульсы от многих интероцепторов проходят по задним и вентро-латеральным столбам спинного мозга.
Интероцептивная информация поступает в ряд структур ствола мозга и подкорковые образования. Так в хвостатое ядро поступают сигналы от мочевого пузыря, в задне-вентральное ядро (VPL) — от многих органов грудной, брюшной и тазовой областей. Исследование нейронов таламуса показало, что на многие из них конвергируют как соматические, так и вегетативные влияния. Важную роль играет гипоталамус, где имеются проекции чревного и блуждающего нервов. В мозжечке обнаружены нейроны, реагирующие на раздражение чревного нерва.
Высшим отделом висцерального анализатора является кора большого мозга. Двустороннее удаление коры сигмовидной извилины резко и надолго подавляет условные реакции, выработанные на механические раздражения желудка, кишечника, мочевого пузыря, матки. Еще более подавляются «висцерохимические» условные рефлексы. Лимбическая система имеет прямое отношение к висцеральным функциям. Лимбическая система и сенсомоторные зоны коры тесно связаны и совместно участвуют в условнореф-лекторном акте, начинающемся при стимуляции интероцепторов.
Возбуждение некоторых интероцепторов приводит к возникновению четких, локализованных ощущений, как при растяжении стенок мочевого пузыря или прямой кишки. В то же время возбуждение интероцепторов сердца и сосудов, печени, почек, селезенки, матки и ряда других органов не вызывает ясных осознанных ощущений. Возникающие в этих случаях сигналы часто имеют подпороговый характер. И. М. Сеченов, придававший интероцепторам большое значение в формировании поведения, указывал на «темный, смутный», характер этих ощущений. Только при выраженном патологическом процессе в том или ином внутреннем органе эти сигналы доходят до сознания и часто сопровождаются болевыми ощущениями.
Изменение состояния внутренних органов, регистрируемое висцеральным анализатором, даже если оно не осознается человеком, может оказывать значительное влияние на его настроение, самочувствие и поведение. Это связано с тем, что интероцептивные сигналы доходят до разных (и достаточно высоких) уровней ЦНС вплоть до коры большого мозга, что может приводить к изменениям активности многих нервных центров, выработке новых условнорефлекторных связей и т. д. Особенно важна роль интероцеп-тивных условных рефлексов в формировании сложных цепных реакций, составляющих пищевое, половое и другие формы поведения и являющихся важной частью жизнедеятельности человека и животных.
Дата добавления: 2015-12-15 | Просмотры: 2935 | Нарушение авторских прав
|