АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ СЕКРЕТОРНОГО ПРОЦЕССА

Прочитайте:
  1. D. отношения между работодателем и работником по поводу применения и процесса наемного труда
  2. I. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ ЛУЧЕВОГО ИССЛЕДОВАНИЯ. ОБЕСПЕЧЕНИЕ БЕЗОПАСНОСТИ ЛУЧЕВОГО ИССЛЕДОВАНИЯ.
  3. III. Организация лечебно-профилактической помощи детям в детской поликлинике.
  4. III. Организация медицинской помощи населению.
  5. Анализ локализации процесса
  6. Анализ причин хронизации процесса
  7. Атопический дерматит. Определение. Этиология. Классификация. Клиническая картина. Диагностика. Лечение. Уход. Диетотерапия. Организация быта больного ребенка.
  8. Ауксины, биосинтез и их роль в процессах регуляции роста растений.
  9. Вегетативная нервная система, морфофункциональная организация и функции ее отделов. Вегетативные рефлексы и регуляция висцеральных систем организма.
  10. Вегетативная нервная система, морфофункциональная организация и функции ее отделов. Вегетативные рефлексы и регуляция висцеральных систем организма.

Секретообразование тесно связано с функционированием се­креторных клеток альвеолярного эпителия и их структурных ком­понентов. Наиболее важные звенья в цепи клеточных процессов, обеспечивающих образование и выделение из клетки секреторно-


го продукта, следующие: а) синтез различных типов РНК (рРНК, мРНК, тРНК), обусловленный генетической информацией, со­держащейся в ядре; б) участие мРНК и тРНК в синтезе белка на рибосомах (полисомах); в) деятельность структур эндоплазма™ -ческого ретикулума в сегрегации и перемещении секреторного продукта; г) концентрация и «упаковка» секреторного продукта структурами комплекса Гольджи.

Понятие «организация секреторного процесса» включает и стро­гую регламентацию секретообразования. Многообразные процес­сы синтеза и преформирования первичных и промежуточных форм секреторного продукта строго локализованы и проходят в опре­деленные промежутки времени. Эта пространственно-временная последовательность обязательно укладывается в рамки секретор­ного цикла. Весьма важной особенностью многих клеток является изменение их морфологических параметров на всех его этапах. Методы электронной микроскопии и авторадиография, а также цитофизиологические наблюдения в ходе прижизненного иссле­дования позволили выявить конкретные этапы секреторного цик­ла: 1) поступление веществ — предшественников секрета в тело клетки; 2) синтез первичного секрета; 3) внутриклеточный транс­порт, дальнейшая обработка и накопление секреторного продук­та; 4) удаление из клетки, выведение секрета (экструзия). Таким образом, секреторный цикл — это последовательное про­хождение клеткой стадий метаболических и структурных пере­строек, обеспечивающих полное превращение секреторного про­дукта от поступления веществ-предшественников до вывода из тела клетки готового сформированного продукта секреции.

Изменения, происходящие в секреторном эпителии при ин­тенсификации секреции, указывают на то, что некоторые процес­сы приходятся на начало секреторного цикла — активация ядер­ного аппарата совпадает с интенсификацией транспортных про­цессов. На первых этапах секреторного цикла, сразу после удале­ния ранее синтезированного секрета, происходит значительное увеличение объема секреторных клеток и изменение их формы от уплощенной к цилиндрической; при одновременной интенсифи­кации транспортных и синтетических процессов меняется био­электрическая активность клетки: Функциональное набухание обусловлено быстрым поступлением в клетку осмотически актив­ных веществ — глюкозы, аминокислот и электролитов. Удлинение эпителиальных клеток связано с сократительной активностью внутриклеточных цитоскелетных структур: разрушение их с помо­щью колхицина предупреждает изменение формы клеток.

На начальных стадиях секреторного цикла в несколько раз уси­ливается активность таких транспортных ферментов, как, напри­мер, щелочная фосфатаза. С увеличением объема цитоплазмы секреторной клетки совпадает повышение уровня содержания РНК. Новообразование РНК и транспорт ее в цитоплазму вызва-


 




ны, в свою очередь, активацией генома клетки. Интенсифика­ция транскрипционной активности хроматина проявляется в по­вышении содержания деконденсированного хроматина и усиле­нии связывания флюоресцентных индикаторов, указывающих на дерепрессию определенных участков генома.

В ходе секреторного цикла на полисомах, расположенных на поверхности каналов эндоплазматического ретикулума, происхо­дит синтез пептидных цепей. В полисоме на одну молекулу мРНК приходится несколько рибосом; образование полисомных комп­лексов обеспечивает наиболее эффективное использование мРНК. Пройдя через одну и ту же серию кодонов мРНК, рибосомы синте­зируют однотипный белок. На рибосомах синтез белка осущест­вляется за 2...3 мин, в течение следующих 10 мин меченые амино­кислоты обнаруживаются в составе пептидной или белковой моле­кулы в просвете каналов эндоплазматического ретикулума. В клет­ках молочной железы эндоплазматический ретикулум участвует и в синтезе молочного жира.

Затем секреторный продукт поступает в комплекс Гольджи, где полипептидные цепи формируют мицеллы казеина за счет образо­вания фосфатных и кальциевых связей. Структуры комплекса Гольджи осуществляют еще одну функцию секреторной клетки — синтез молочного сахара (лактозы). Лактоза, сформированная за время прохождения компонентов комплекса Гольджи, по цито­плазме вместе с гранулами казеина переходит в полость альвеолы при опорожнении везикул. Очевидно, это наиболее удачный путь выхода молочного сахара из клетки, поскольку лактоза неспособ­на проникать через клеточную мембрану.

Располагающийся в конденсирующих везикулах комплекса Гольджи секреторный продукт, состоящий из казеина и лактозы, а также липидные глобулы для выведения из клетки перемещаются в ее апикальную зону. Это направленное перемещение связано с электрической поляризацией клеток альвеолярного эпителия: внут­риклеточные везикулы перемещаются к положительному полюсу клетки. При действии физиологически активных веществ, усилива­ющих выделение секрета из клеток, развивается гиперполяризация клеточной мембраны, усиливающая степень поляризации клетки. Вместе с этим в процессах выведения секрета за пределы секретор­ной клетки, несомненно, участвуют сократительные элементы: ци-тоскелета при обработке молочной железы колхицином, вещест­вом, разрушающим микротрубочки, экструзия прекращается.

Электронномикроскопическое исследование секреторных кле­ток позволяет детализировать процесс удаления секрета. Крупная жировая капля (глобула) приближается к апикальной мембране и облекается ею. По мере увеличения контакта с плазматической мембраной капля все больше выступает в просвет альвеолы. Оги­бая жировую каплю, плазматическая мембрана сужается у основа­ния и перешнуровывается, а затем отрывается и попадает в по-


лость альвеолы. Выведение из клетки белка и лактозы происходит иначе: заключенные в мембраны конденсирующие вакуоли подхо­дят к апикальной мембране. Мембрана вакуоли соединяется с плаз­матической мембраной, затем полость вакуоли полностью раскры­вается и ее содержимое опорожняется в просвет альвеолы. Заметим, что плазматическая мембрана после того, как ее часть пошла на по­крытие молочного жирового шарика, восстанавливается за счет расправления на апикальной ее поверхности стенки везикулы, при­носящей белковые секреторные гранулы. Следует подчеркнуть, что декапитация и, следовательно, апокриновый тип секреции в мо­лочной железе не происходит. Белок выходит из клетки по мер-окриновому типу, а для удаления жира используется леммокрино-вый (лат. lemma — оболочка) принцип экструзии.

Альвеола — структурно-функциональная единица молочной же­лезы. Как показали исследования на культивированных изолиро­ванных клетках молочной железы, уровень их секреции оказывает­ся значительно ниже, чем в клеточном сообществе. То есть для со­хранения секреторной функции железистых органов и, в частности, молочной железы, необходима целостность клеточного комплекса как функциональной единицы. Для большинства экзокринных же­лез, включая молочную, такой «неделимой» единицей является аль­веола или ацинус. При анализе принципов объединения клеток в альвеолярном комплексе наиболее важными являются межклеточ­ное взаимодействие и последовательность развития реакций в от­дельных компонентах клеточного ансамбля.

Взаимодействие между секреторными клетками обусловлено функционированием межклеточных контактов, расположенных на сопредельных поверхностях клеток. При внутриклеточной инъекции флюоресцентной метки в одну из клеток альвеолы уже через 10...15 мин флуорохром обнаруживается в 2...3 распо­ложенных рядом клетках, что свидетельствует о существовании межклеточного обмена крупными молекулами. При развитии физиологических реакций альвеолы первыми реагируют (около 25 % клеток), и только затем через 10... 15 мин в реакцию вовле­каются остальные клетки. Система высокопроницаемых кон­тактов объединяет клетки в функциональный синцитий при со­хранении клеточной обособленности. При повреждении сосед­них клеток оставшиеся целыми клетки «отключают» высоко-проницаемые контакты и распространение информации по альвеоле прекращается.

Барьерные свойства секреторного эпителия формируются за счет наличия специального замыкательного комплекса плотного контакта, расположенного на границе между апикальной и лате­ральной зонами клеточной мембраны. Через альвеолярный барьер i ie проникают специальные вещества (пероксидаза и флуоресцеин натрия). Все вещества, попадающие в просвет альвеолы, обяза­тельно должны пройти через секреторную клетку.


 




Взаимодействие между миоэпителиальными и секреторными
клетками возникает в ходе функционального сопряжения процес­
сов выведения ранее синтезированного молока и включения кле­
ток альвеолярного эпителия в новый секреторный цикл. Выве­
дение молока из полости альвеол и возбуждение секреторного
процесса в железистых клетках воспроизводится гормоном ней-
рогипофиза — окситоцином и медиатором нервной системы —
ацетилхолином. Кроме того, при блокаде М-холинорецепторов
реакция клеток альвеолярного эпителия не развивается, хотя со­
кращения миоэпителия и выведение молока из полости альвеолы
происходят. В миоэпителиальных клетках на основании гисто­
химического исследования выявлена возможность синтеза аце-
тилхолина, обнаружена активность специфического фермента
ацетилхолинтрансферазы. Кроме того, нарушение синтеза аце-
тилхолина приводит к отсутствию реакций секреторного эпите­
лия, и только введение его извне восстанавливает секрецию. Си­
стема инактивации ацетилхолина представлена в молочной же­
лезе холинэстеразами, среди которых обнаружены как ацетилхо-
линэстераза, так и ацилгидролазы. Действие антихолинэстераз-
ных препаратов, предупреждающих гидролиз ацетилхолина, обес­
печивает потенцирующий эффект. Таким образом, можно гово­
рить о существовании своеобразного механизма передачи регу­
лирующих влияний с сократительной структуры альвеолы (мио-
эпителиальной клетки) на секреторные клетки с помощью меди­
атора (ацетилхолина), который синтезируется в миоэпителии и
выделяется в пространство между секреторной и миоэпителиаль-
ной клетками и улавливается холинрецепторами на мембране |
секреторной клетки (рис. 10.2). ;

Сокращение миоэпителиальных клеток развива- > ется при действии окситоцина и ацетилхолина, причем клетки об- \ ладают самостоятельными окситоциновыми и холинорецептора- i ми. Атропин не прекращает сократительной реакции альвеолы, а совместный эффект действия ацетилхолина и окситоцина оказы­вается сильнее, чем каждого из них в отдельности. Существенное изменение сократительной активности миоэпителия наступает под влиянием катехоламинов, блокирующих сокращения альвеол в ответ на действие окситоцина. Подавление сокращений миоэпи-телиальной клетки связано с реакцией Р-адренорецепторов, пре­дотвращающих последующую сократительную активность. Сокра­щения миоэпителия развиваются при деполяризации мембраны, в том числе и под действием электрического тока с длительностью импульса не менее 350 мс.

Сократительный аппарат миоэпителиальных клеток аналоги- < чен таковому у клеток гладкой мускулатуры и представлен мио-фибриллами, заполняющими тело и отростки клеток. Каждая мио-фибрилла построена из ориентированных в продольном направ­лении миофиламент толщиной от 50 до 80 нм. Обнаруживается


Рис. 10.2. Схема межклеточных взаимоотношений в альвеолах молочной железы:

МЭП— миоэпителиальная клетка; ЯГ—секреторная клетка; ПА — по­лость альвеолы; К— капилляр; В —везикулы; ЖК— жировая клетка; ФБ — фибробласт; НВ — нервы

центральная линия прикрепления — аналог Z-мембраны. Наряду с аналогом Z-мембраны выявлены электронноплотные и элект-роннопрозрачные участки, подобные дискам А и I. Соединенные друг с другом и с Z-мембраной миофиламенты заполняют про­странство отростков миоэпителиальных клеток, причем в месте прикрепления к плазматической мембране увеличена электронная плотность хемидесмосома. Сокращения миоэпителия связаны с повышением концентрации кальция внутри клетки. Обнаружено два места депонирования ионизированного кальция — это каналы эндоплазматического ретикулума и примембранные везикулярные структуры. При действии окситоцина и развитии сокращения миоэпителиальной клетки ионизированный кальций обнаружива­ется в пространстве между миофиламентами.

Кровоснабжение альвеол существенно меняется в ходе секреторного цикла, причем расширение микрососудов и раскрытие дополнительных капилляров обеспечивают рабочую гиперемию органа. Регистрация кровенаполнения сосудов, окру­жающих альвеолу, позволяет обнаружить наличие двухфазной реакции кратковременной вазоконстрикции (сужения сосудов), обусловленной действием окситоцина (структурного аналога вазопрессина) и длительной вазодилятацией (расширением сосу­дов). Интенсивность секретообразования тесно связана с полно­ценным кровоснабжением органа: объемный кровоток значитель­но возрастает при становлении лактации и увеличении молочной продуктивности в лактационный период. Нарушение образования


молока при гипогалактии обычно связано и с отклонениями в ге­модинамике. По данным реологического исследования, сущест­венно снижается амплитуда пульсовой волны, сглаживаются ка-такрота и анакрота, что указывает на спазм микрососудов молоч­ной железы. Вместе с этим падение молочной продуктивности со­провождается снижением кожной температуры молочной железы наО,5...1,5°С.


Дата добавления: 2015-12-15 | Просмотры: 622 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)