АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Физиологические механизмы развития выносливости.

Прочитайте:
  1. II Физиологические параметры органа зрения
  2. II-ой этап развития хирургии с 1731года до конца XIX века ознаменовался открытием обезболивания (1846г), антисептики (1867г) и асептики (1880г).
  3. III. По особенностям цикла развития
  4. V2: Анатомо-физиологические особенности органов и систем, методы обследования.
  5. V2: Анатомо-физиологические особенности органов и систем, методы обследования.
  6. V2: Анатомо-физиологические особенности органов и систем, методы обследования.
  7. V2: Тема 7.1 Обзор строения головного мозга. Основание головного мозга. Выход черепных нервов (ЧН). Стадии развития. Продолговатый мозг, мост.
  8. Адаптация рецепторов и ее механизмы.
  9. Адаптивный ответ, его неспецифичность. Примеры. Механизмы.
  10. Аккомодация, ее механизмы и объем.

 

Общая выносливость зависит от доставки кислорода работающим мышцам и, главным образом, определяется функционированием кисло-родтранспортной системы: сердечно-сосудистой, дыхательной и системой крови.

 

Развитие общей выносливости обеспечивается разносторонними пере­стройками в дыхательной системе. Повышение эффективности дыхания достигается:

- увеличением (на 10-20 %) легочных объемов и емкостей (ЖЕЛ дос­тигает 6-8 л и более),

- нарастанием глубины дыхания (до 50-55% ЖЕЛ),

- увеличением диффузионной способности легких, что обусловлено увеличением альвеолярной поверхности и объема крови в легких, протекающей через расширяющуюся сеть капилляров,

- увеличением мощности и выносливости дыхательных мышц, что приводит к росту объема вдыхаемого воздуха по отношению к функ­циональной остаточной емкости легких (остаточному объему и ре­зервному объему выдоха).

Все эти изменения способствуют также экономизации дыхания: боль­шему поступлению кислорода в кровь при меньших величинах легочной вентиляции. Повышение возможности более выгодной работы за счет аэробных источников энергии позволяет спортсмену дольше не переходить к энергетически менее выгодному использованию анаэробных источников, т. е. повышает вентиляционный порог анаэробного обмена (ПАНО).

Решающую роль в развитии общей выносливости играют морфофунк-циональные перестройки в сердечно-сосудистой системе, отражающие адаптацию к длительной работе:

- увеличение объема сердца ("большое сердце" особенно характерно для спортсменов-стайеров) и утолщение сердечной мышцы - спор­тивная гипертрофия,

- рост сердечного выброса (увеличение ударного объема крови).

- замедление частоты сердечных сокращений в покое (до 40-50 уд./мин и менее) в результате усиления парасимпатических влияний - спортивная брадикардия, что облегчает восстановление сердеч­ной мышцы и последующую ее работоспособность,

- снижение артериального давления в покое (ниже 105 мм рт. ст.) -спортивная гипотония.

В системе крови повышению общей выносливости способствуют.

- увеличение объема циркулирующей крови (в среднем на 20%) за счет, главным образом, увеличения объема плазмы, при этом адап­тивный эффект обеспечивается: 1) снижением вязкости крови и со­ответствующим облегчением кровотока и 2) большим венозным воз­вратом крови, стимулирующим более сильные сокращения сердца,

- увеличение общего количества эритроцитов и гемоглобина (следует заметить, что при росте объема плазмы показатели их относительной концентрации в крови снижаются),

- уменьшение содержания лактата (молочной кислоты) в крови при работе, связанное, во-первых, с преобладанием в мышцах выносли­вых людей медленных волокон, использующих лактат как источник энергии, и во-вторых, обусловленное увеличением емкости буфер­ных систем крови, в частности, ее щелочных резервов. При этом лактатный порог анаэробного обмена (ПАНО) так же нарастает, как и вентиляционный ПАНО.

Несмотря на указанные адаптивные перестройки функций, в организме стайера происходят значительные нарушения постоянства внутренней сре­ды (перегревание и переохлаждение, падение содержания глюкозы в крови и т. п.). Способность спортсмена переносить весьма длительные нагрузки обеспечивается его способностью "терпеть" такие изменения.

В скелетных мышцах у спортсменов, специализирующихся в работе на выносливость, преобладают медленные мышечные волокна (до 80-90 %). Рабочая гипертрофия протекает по саркоплазматическому т и п у. т. е. за счет роста объема саркоплазмы. В ней накапливаются запа­сы гликогена, липидов, миоглобина, становится богаче капиллярная сеть, увеличивается число и размеры митохондрий. Мышечные волокна при длительной работе включаются посменно, восстанавливая свои ресурсы в моменты отдыха.

В центральной нервной системе работа на выносливость сопровождается формированием стабильных рабочих доминант, которые обладают высокой помехоустойчивостью, отдаляя развитие запредельного торможе­ния в условиях монотонной работы. Особой способностью к длительным циклическим нагрузкам обладают спортсмены с сильной уравновешенной нервной системой и невысоким уровнем подвижности - флегматики.

Специальные формы выносливости характеризуются разными адаптивным перестройками организма в зависимости от специфи­ки физической нагрузки.

Специальная выносливость в циклических видах спорта зависит от длины дистанции, которая определяет соотношение аэробного и анаэроб­ного энергообеспечения.

В лыжных гонках на длинные дистанции соотношение аэробной и ана­эробной работы порядка 95% и 5%; в академической гребле на 2 км, соот­ветственно, 70% и 30%; в спринте - 5% и 95%. Это определяет разные тре­бования к двигательному аппарату и вегетативным системам в организме спортсмена.

Специальная выносливость к статической работе базируется на вы­сокой способности нервных центров и работающих мышц поддерживать непрерывную активность (без интервалов отдыха) в анаэробных условиях. Торможение вегетативных функций со стороны мошной моторной доми­нанты по мере адаптации спортсмена к нагрузке постепенно снижается, что облегчает дыхание и кровообращение. Статическая выносливость мышц шеи и туловища, содержащих больше медленных волокон, выше по сравнению с мышцами конечностей, более богатых быстрыми волокнами.

Силовая выносливость зависит от переносимости нервной системой и двигательным аппаратом многократных повторений натуживания, вызы­вающего прекращение кровотока в нагруженных мышцах и кислородное голодание мозга. Повышение резервов мышечного гликогена и кислород­ных запасов в миоглобине облегчает работу мышц. Однако почти полное и одновременное вовлечение в работу всех ДЕ лишает мышцы резервных ДЕ, что лимитирует длительность поддержания усилий.

Скоростная выносливость определяется устойчивостью нервных цен­тров к высокому темпу активности. Она зависит от быстрого восстановле­ния АТФ в анаэробных условиях за счет креатинфосфата и реакций глико­лиза.

Выносливость в ситуационных видах спорта обусловлена устойчи­востью центральной нервной системы и сенсорных систем к работе пере­менной мощности и характера - "рваному" режиму, вероятностным пере­стройкам ситуации, многоальтернативному выбору, сохранению координа­ции при постоянном раздражении вестибулярного аппарата.

Выносливость к вращениям и ускорениям требует хорошей устойчи­вости вестибулярной сенсорной системы. Квалифицированные фигуристы, например, без отрицательных соматических и вегетативных реакций могут переносить до 300 вращений на кресле Барани вокруг вертикальной оси. После таких многократных вращений у этих спортсменов совершенно незначительно так называемое время поиска стабильной позы. Активные вращения при выполнении специальных упражнений в большей мере спо­собствуют повышению вестибулярной устойчивости, чем пассивные вра­щения на тренажерах.

Выносливость к гипоксии, характерная, например, для альпинистов, связана с понижением тканевой чувствительности нервных центров, сер­дечной и скелетных мышц к недостатку кислорода. Это свойство в значи­тельной мере является врожденным. Лишь несколько спортсменов-альпинистов во всем мире смогли подняться на высоту более 8 тыс. м (Эверест) без кислородного прибора (например, Владимир Балыбердин).

 

9.3.3. Физиологические резервы выносливости.

Физиологические резервы выносливости включают в себя:

· мощность механизмов обеспечения гомеостаза - адекватная дея­тельность сердечно-сосудистой системы, повышение кислородной емкости крови и емкости ее буферных систем, совершенство регуля­ции водно-солевого обмена выделительной системой и регуляции теплообмена системой терморегуляции, снижение чувствительности тканей к сдвигам гомеостаза;

· тонкая и стабильная нервно-гуморальная регуляция механизмов поддержания гомеостаза и адаптация организма к работе в изменен­ной среде (так называемому гомеокинезу).

Развитие выносливости связано с увеличением диапазона физиологиче­ских резервов и большими возможностями их мобилизации. Особенно важно развивать в процессе тренировки способность к мобилизации функ­циональных резервов мозга спортсмена в результате произвольного пре­одоления скрытого утомления. Более длительное и эффективное выполне­ние работы связано не столько с удлинением периода устойчивого состоя­ния, сколько с ростом продолжительности периода скрытого утомления. Волевая мобилизация функциональных резервов организма позволяет за счет повышения физиологической стоимости работы сохранять ее рабочие параметры - скорость локомоции, поддержание заданных углов в суставах при статическом напряжении, силу сокращения мышц, сохранение техники движения.

 


Дата добавления: 2015-12-15 | Просмотры: 734 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)