АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Рнс. 17. Схема строения молекулы ДНК из двух спирально закрученных цепей (по Д. Уотсо-ну и Ф. Крику) (Цифры указывают на расстоя-

Прочитайте:
  1. B) нуклеотидов и образования двухцепочечной молекулы ДНК
  2. IV СХЕМА ОФОРМЛЕННЯ ІСТОРІЇ ХВОРОБИ З КУРСУ АКУШЕРСТВА, ГІНЕКОЛОГІЇ ТА БІОТЕХНОЛОГІЇ РОЗМНОЖЕННЯ ТВАРИН
  3. IV. Структурно-логічна схема теми
  4. IV. Структурно-логічна схема теми
  5. V2: Тема 7.1 Обзор строения головного мозга. Основание головного мозга. Выход черепных нервов (ЧН). Стадии развития. Продолговатый мозг, мост.
  6. Анатомические особенности строения молочных зубов
  7. Биохимия настроения и интуиции
  8. ВИЧ инфекция. Особенности строения, репликации и патогенеза ВИЧ.
  9. Вопрос « Психогигиеническая характеристика расстройств настроения (депрессии).
  10. Вопрос №106. Особенности строения и функция верхних и нижних моляров.

ния ■ А между разными точками молекулы)


Рис. 18. Схема отрезка двухцепочной молекулы ДНК (по С. М. Гершензону)

положение пуриновых и пиримидиновых оснований нуклеотидов вдоль цепи ДНК очень изменчиво и характерно для каждого данного типа молекул ДНК. Значит, наследственная информация зашифрована различной последовательностью оснований.

Нуклеотидный состав ДНК значительно варьирует в зависи­мости от принадлежности организма к той или иной системати­ческой группе (табл. 7). Специфичность ДНК выражается соот­ношением А + Т/Г + Ц, получившим название коэффициента ви­довой специфичности.

 

7. Нуклеотидный состав ДНК из различных (по А. Ленинджеру, 1976) ИСТОЧНИКОВ
    Нуклеотидный состав, мол. % Коэффициент
Объект   А Г Ц   т специфичности А + Т/Г + Ц
               

30,9 19,9 19,8 29,4 1,52

Человек Животные:

28,3 1,36 29,2 1,38 27.1 1,19 32,9 1,79 24,9 1,00 23,6 0,93 29.2 1,50 36.2 2,70 21,1 0,72 12.2 0,35
29,3 21,4 21,0
28,8 20,5 21,5
27,3 22,7 22,8
31,3 18,7 17,1
25,0 25,1 25,0
24,7 26,0 25,7
30,8 21,0 19,0
36,9 14,0 12,8
21,0 29,0 28,9
13,4 37,1 37,1

овиа

курица

Растения, грибы, зерна пшеницы Дрожжи

Aspergillus niger Бактерии:

Е. coli

Staphylococcus ayreus

Clostridium perfinngens

Bnicella abortus

Sarcina lutea


топоизомераза

В ДНК животных наблюдается избыток А + Т по отношению к Г + Ц. У грибов и бактерий встречаются формы как богатые А + Т, так и с преобладанием Г + Ц, в то же время есть близкие по коэффициенту специфичности к животным. Это говорит о том, что изменчивость в расположении оснований уже достаточ­на для того, чтобы обеспечить различия между генами этих организмов.

Молекулы ДНК состоят примерно из 2-Ю3— МО8 и более нуклеотидов и имеют большую относительную молекулярную массу.

Репликация (удвоение) ДНК. ДНК находится в хромосомах, и репликация ее происходит перед каждым удвоением хромосом и деле­нием клетки. Дж. Уотсон и Ф. Крик предложили схему удвоения ДНК, согласно которой спиралевидная двухцепочная ДНК снача­ла раскручивается (расплетается) вдоль оси. При этом водородные связи между азотистыми основаниями рвутся и цепи расходятся. Одновременно к нуклеотидам каждой цепи пристраиваются ком­плементарные азотистые основания нуклеотидов второй цепи, где против аденина встает тимин, против тимина — аденин, против гуанина — цитозин и т. д., которые с помощью ферментов ДНК-полимераз связываются в новые полинуклеотидные цепи. В ре­зультате из одной образуются две новые дочерние молекулы ДНК. Каждая дочерняя молекула, наследуя структуру одной цепи мате­ринской молекулы, строго сохраняет специфичность заключенной в ней информации. Поскольку матрицей для репликации служит одна из двух цепей молекулы, такой тип синтеза ДНК носит название полуконсервативной ауторепродукции.

Дальнейшие исследования показали, что репликация бактери­альных и других молекул ДНК начинается в определенной точке старта. В хромосомах эукариот обнаружено по нескольку таких начальных точек. Цепи ДНК в точке инициации репликации разъединяются под влиянием особого белка геликазы (рис. 19). Возникают одноцепочные участки ДНК, которые становятся матрицами для репликации-притяжения комплементарных нук­леотидов. Эти одноцепочные участки связываются с особыми белками, которые их стабилизируют (препятствуют их компле­ментарному взаимодействию). Особый фермент топоизомераза (у прокариот назьгаается ДНК-гиразой) способствует расщеплению спирали ДНК в области репликационной вилки.

Репликация на материнской цепи, идущей от точки старта в направлении 5'-*3', идет в виде сплошной линии. Эта цепь полу­чила название лидирующей. Синтез на второй цепи 3'->5' идет отдельными фрагментами в противоположном направлении (тоже 5'-»3')- Эта цепь получила название запаздывающей. Фрагментами являются небольшие участки ДНК (у кишечной палочки около 2000 нуклеотидов, у эукариот около 200). Они называются по


Дата добавления: 2015-12-16 | Просмотры: 526 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)