АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

ПОНЯТИЕ О ГЕНОТИПЕ И ФЕНОТИПЕ МИКРООРГАНИЗМОВ

Прочитайте:
  1. II. Генетика микроорганизмов. Основы учения об инфекции. Основы химеотерапии.
  2. БИОТРАНСФОРМАЦИЯ И ВЫВЕДЕНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ. ПОНЯТИЕ О ФАРМАКОГЕНЕТИКЕ
  3. В. 24 Диатезы у детей. понятие аномалии конституции. Лимфатико-гипопластический и нервно-артрический диатезы у детей.
  4. В. 50 Понятие инфекционного токсикоза у детей раннего возраста. Этиопатогенез. Основные клинические проявления.
  5. В. 53 Вегето-сосудистая дистония у детей и подростков. Понятие, классификация. Клиника.
  6. В. 64. Понятие инфекции мочевыводящей системы. Этиопатогенез, классификация, клиника пиелонефрита у детей. Принципы терапии.
  7. В. Внутренняя активность лекарственных веществ. Понятие об агонистах и антагонистах рецепторов.
  8. В.7 Понятие пубертата. Парафизиологические состояния в подростковом периоде детей.
  9. Варикозное расширение вен нижних конечностей. Понятие. Клиника. Возможные осложнения.
  10. Вентиляция лёгких. Дыхательные объемы и емкости: понятие, методы определения.

Генотип — совокупность генов бактериальной клетки; фено­тип — совокупность всех признаков и свойств, проявляемых данной культурой. В отличие от особей высших организмов, у которых исследуются признаки и свойства каждой особи, у мик­роорганизмов изучаются признаки и свойства в целом всей куль­туры (штамма), т. е. совокупности клеток, включающих миллио­ны и миллиарды особей. Культуры микробов могут отличаться морфологическими, физиологическими и биохимическими при­знаками. К морфологическим признакам относятся окраска, раз­мер, форма, характер края и поверхности отдельно растущих колоний и т. д.; к физиологическим и биохимическим — способ­ность или неспособность расти при пониженной или повышен­ной температуре, устойчивость к антибиотикам, различным ядам, облучению, отношение к питательным средам.

П<* способу питания бактерии делятся на прототрофные и аук-сотрофные. Прототрофные могут жить на минимальной питатель­ной среде (содержащей минеральные соли и углеводы) и необхо­димые им вещества способны синтезировать сами. В то же время получено много штаммов грибов и бактерий, которые в отличие от исходного штамма (так называемого дикого типа) лишены способ­ности синтезировать одну или несколько аминокислот или другие факторы роста из более простых предшественников. Такие штам­мы называют ауксотрофными. Ауксотрофный штамм можно иден­тифицировать по его неспособности расти и размножаться на син­тетической среде, которая не содержит какого-то специфического фактора роста. Но если в синтетическую среду добавить компо­нент, который ауксотрофный штамм не способен самостоятельно синтезировать, то он начинает расти так, что его уже невозможно отличить от прототрофного. Таким образом, культура микроорга­низма может быть изучена в отношении многих признаков.

Гены, ответственные за синтез определенного соединения, обозначают тремя строчными буквами, соответствующими на­чальным буквам этого соединения. Гены исходного дикого типа обозначают со знаком «+», например, his"1" — гистидиновый ген, leu+ — лейциновый ген, arg+ — аргининовый ген и т. д. Гены чув­ствительности или резистентности к лекарственным препаратам, фагам и ядам обозначают буквами s (sensitive — чувствительный) и г (resistant — резистентный). Например, чувствительность к стреп­томицину обозначают sti*, а резистентность — strr. Фенотип бак­терий обозначают теми же символами, что и генотип, но с про­писной буквы. Так, генотипам his+, leu"1", aig+, strr соответствуют фенотипы His+, Leu+, Arg+, Strr. Символы His"1", Leu+, Arg+ указы­вают на способность синтезировать гистидин, лейцин, аргинин, а символ Strr — на резистентность к стрептомицину. Альтернатив­ные им признаки обозначают символами His~~, Leu~, Arg~, Str5.


Генотип микроорганизмов представлен совокупностью генов, обусловливающих потенциальную возможность формирования любого их признака. Но формирование признака происходит в определенных условиях окружающей среды, которые не всегда способствуют проявлению генотипа. Так, два штамма Е. coli с генотипами lac* и 1ас~ на среде с лактозой будут иметь разные фенотипы: бактерии с генотипом 1ас+ образуют колонии красного цвета, а бактерии с генотипом 1ас~ образуют бесцветные колонии, так как они не ферментируют лактозу. При выращивании этих штаммов на среде без лактозы фенотип их будет одинаковым. Патогенный генотип одного штамма бактерий можно отличить от другого непатогенного штамма только при заражении восприим­чивого животного. В организме невосприимчивого животного ге­нотип патогенного штамма не появится.

Исследования по генетике микроорганизмов показывают, что им присуща большая изменчивость. Изменения, возникающие под влиянием окружающей среды и не сохраняющиеся при пере­носе клеток в исходные условия, носят название модификацион-ных. Модификации не наследственны, они не затрагивают геноти­па микроба и исчезают в первом или последующих поколениях. Микроорганизмам, как и всем прочим живым организмам, свойст­венно проявление комбинативной изменчивости, которая является наследственной. В силу того что прокариоты имеют гаплоидный набор хромосом и им несвойственно половое размножение, гене­тические рекомбинации у них имеют свои особенности. Рекомби­нация у бактерий происходит путем переноса генетического мате­риала из клетки донора в клетку реципиента при помощи конъ­югации, трансдукции и трансформации. Эти процессы отличаются главным образом способом переноса генетического материала.

КОНЪЮГАЦИЯ

Конъюгация — перенос генетического материала от одной бак­териальной клетки (донора) к другой (реципиенту) при их непо­средственном контакте. Процесс конъюгации у бактерий обнару­жили Дж. Ледерберг и Э. Татум в 1946 г. Они провели следую­щий эксперимент. Были отобраны два ауксотрофных мутантных штамма Е. coli К-12: не способный синтезировать метионин и биотин штамм Met~ Bio~ и не способный синтезировать трео­нин и лейцин штамм Thr~ Leu~. Оба штамма в течение ночи выращивали вместе на полноценной среде. Затем смешанную культуру центрифугировали, отмывали от полноценной среды и высевали на минимальную питательную среду. На минимальной питательной среде без метионина, биотина, треонина и лейцина появились прототрофные колонии Met+ Bio+ Thr+ Leu+ с часто­той около 1 на каждые 107 клеток. Дополнительные опыты пока­зали, что ни трансформации, ни трансдукции в данном случае не


происходило. Из этого следовало, что образование рекомбинант-ных геномов происходило в результате контакта родительских клеток. Вскоре были получены микрофотографии конъюгирую-щих бактерий кишечной палочки, которые свидетельствовали о том, что между бактериями при конъюгации образуется цито-плазматический мостик.

В 1952 г. Хейс установил неравноценную роль родительских штаммов при конъюгации. Выяснилось, что один штамм являет­ся донором (мужским), другойреципиентом (женским). Клетки-доноры обладают половым фактором F. Он является конъюгатив-ной плазмидой и представляет собой циркулярно замкнутую мо­лекулу ДНК. Половой фактор F автономно существует в цитоплазме. Бактериальные клетки с фактором F обозначают F"1", а не имеющие его — F~~. В составе генома конъюгативной плаз­миды имеется tra-оперон, гены которого контролируют образова­ние половых ворсинок (пилей) донорской клетки, необходимых для осуществления контакта с реципиентной клеткой, конъюга-тивнйй перенос собственной плазмиды или хромосомной ДНК, а также репликацию автономной плазмиды.

Механизм переноса генетического материала при конъюгации из бактерии донора в бактерию реципиента показали В. Вольман и Ф. Жакоб. При конъюгации фактор F может перейти из муж­ской в женскую клетку и превратить ее в F4". Доноры F+ пере­носят довольно эффективно F-плазмиду во все клетки F~, a гены хромосомы — с низкой частотой (10~5).

Половой фактор F обладает способностью включаться в геном бактерии и тогда из цитоплазматической структуры превращается в фрагмент хромосомы. Клетки, в которых возникает этот процесс, образуют Hfr-штамм. Доноры Hfr переносят бактериальную хромо­сому с фиксированной точки — сайта интеграции плазмиды, ори­ентированным образом и с высокой частотой (10—2— 10 3). Интег­рированный F-фактор переносится последним. Генетическим методом идентифицировано около 25—30 сайтов интеграции фактора F в хромосому. При конъюгации клетки-доноры F* или Hfr соединяются с Клетками-реципиентами F~ при помощи конъюгационного мостика — особой протоплазматической труб­ки, образуемой клеткой F+. В клетке донора Hfr под влиянием фермента эндонуклеазы в точке внедрения фактора F происхо­дит разрыв цепи ДНК. Свободный конец одной из цепей ДНК постепенно начинает передвигаться через конъюгационный мос­тик в клетку реципиента (F~) и сразу же достраиваться до двух-цепочной структуры. На оставшейся в клетке-доноре цепи ДНК синтезируется вторая цепь.

Так как фактор F у разных штаммов Hfr включается в хромо­сому и разрывает ее в разных местах, переход хромосом в реци-пиентную клетку начинается с разных участков. Для переноса всей цепи ДНК в клетку реципиента требуется при 37 °С


.100 мин, но конъюгационный мостик очень хрупкий, легко раз­рывается, и, как правило, вся цепь не успевает перейти. Поэтому # более высокой частотой передаются гены, расположенные около начальной 0-й точки хромосомы донора. Затем ДНК доно­ра в гомологичных участках вступает в контакт с ДНК реципи­ента, и в результате кроссинговера некоторые участки одной цепи ДНК реципиента заменяются фрагментами ДНК донора.

Искусственное прерывание конъюгации через определенное время после начала скрещивания и выявление рекомбинантов дали возможность определить последовательность перехода раз­ных генов донора в клетку F~. На основании определения вре­мени передвижения фрагментов разной длины из клеток Hfr в клетки F~ было установлено расстояние между генами в мину­тах, что позволило построить карты хромосом.


Рис. 23. Неполная кольцевая карта хромосомы Е. coli К-12

В основе построения карт хромосом лежат последователь­ность расположения генов в хромосоме и расстояние между ними в минутах. Вся окружность хромосомы Е. coli составляет 100 мин. К настоящему времени на карту Е. coli К-12 нанесено более 1000 генов, что составляет около 30 % ее генетической емкости (рис. 23). Иногда включенный в хромосому Hfr половой


фактор освобождается и при этом (подобно профагу) может за­хватить с собой прилегающий к нему участок ДНК бактерии. При конъюгации половой фактор вместе с.фрагментом ДНК иногда переходит в женскую клетку, превращая ее в мужскую и передавая ей свойства, контролируемые фрагментом хромосомы донора. Процесс переноса генетической информации при помо­щи полового фактора называется сексдукцией.

ТРАНСДУКЦИЯ

Трансдущия — перенос генов из одной бактериальной клетки в другую при помощи бактериофага. Впервые это явление уста­новили в 1952 г. Н. Зиндер и Дж. Ледерберг. Они проводили исследования на патогенных для мышей бактериях Salmonella typhimurium. Были отобраны два штамма этих бактерий: штамм 22А ауксотрофный, не способный синтезировать триптофан (Т~), и штамм 2А, способный синтезировать триптофан (Г1"). Эти штаммы засевали в U-образную трубку, разделенную внизу бак­териальным фильтром (рис. 24). В одно колено трубки засевали штамм 22А (Т~), в другое — штамм 2А (Т4"). После определенно­го периода инкубации бактерии штамма 22А при посеве на ми­нимальную питательную среду дали небольшое количество коло­ний (частота появления трансдуцированных клеток была равна 1-10—*). Это свидетельствовало о том, что некоторые клетки приобрели способность синтезировать триптофан. Каким же об­разом бактерии могли приобрести это свойство? Исследования

22А(Т~)
22А(Т*)

показали, что штамм 22А был лизогенен по фагу Р-22. Этот фаг освобождался из лизоген-ной культуры, проходил через фильтр и лизировал штамм 2А. Присоединив часть генетичес­кого материала штамма 2А, фаг возвращался обратно и переда­вал этот генетический материал штамму 22А. Штамм 22А при­обретал специфические наслед­ственные свойства штамма 2А, в данном случае свойство син-

Бактериофаг

тезировать триптофан. Анало­гичным образом могут быть трансдуцированы и другие при­знаки, в том числе способность к сбраживанию, устойчивость к антибиотикам и т. д.

Рис. 24. Схема опыта по трансдукции
 

Явление трансдукции уста­новлено также у кишечной па-


лочки и актиномицетов. Как правило, трансдуцируется один ген, реже два и очень редко три сцепленных гена. При переносе генетического материала заменяется участок молекулы ДНК фага. Фаг при этом теряет свой собственный фрагмент и стано­вится дефектным. Включение генетического материала в хромо­сому бактерии реципиента осуществляется механизмом типа кроссинговера. Происходит обмен наследственным материалом между гомологичными участками хромосомы реципиента и мате­риала, привнесенного фагом.

Различают три вида трансдукции: общую, или неспецифичес­кую, специфическую и абортивную. При неспецифической транс­дукции в период сборки фаговых частиц в их головку вместе с фаговой ДНК может включиться любой из фрагментов ДНК пораженной бактерии. В результате в реципиентные клетки могут переноситься различные гены бактерии донора. Неспеци­фическую трансдукцию могут осуществлять фаги Р-1 и Р-22 у эшерихий, шигелл и сальмонелл. При специфической трансдукции профаг включается в определенное место хромосомы бактерии и трансдуцирует определенные гены, расположенные в хромосоме клетки донора рядом с профагом. Например, фаг X (лямбда) в состоянии профага всегда включается в одно и то же место в хромосоме кишечной палочки и трансдуцирует локус, обуслов­ливающий способность к сбраживанию галактозы. При отделе­нии профагов от ДНК хозяина прилегающие к профагу бактери­альные гены вместе с ним выщепляются из состава хромосомы, а часть генов профага остается в ее составе. Частота общей трансдукции составляет от 1 на 1 млн до 1 на 100 млн. Специ­фическая трансдукция происходит чаще.

Установлено, что фрагмент хромосомы донора, перенесенный в% клетку реципиента, не всегда включается в хромосому реципи­ента, а может сохраняться в цитоплазме клетки. При делении бактерий он попадает только в одну из дочерних клеток. Такое состояние получило название абортивной трансдукции.


Дата добавления: 2015-12-16 | Просмотры: 1056 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)