ГЕННАЯ ИНЖЕНЕРИЯ
Генная инженерия — раздел биотехнологии, связанный с целенаправленным конструированием in vitro новых комбинаций генетического материала, способного размножаться в клетке и синтезировать определенный продукт.
Генная инженерия решает следующие задачи:
1) получение генов путем их синтеза или выделения из кле ток;
2) получение рекомбинантных молекул ДНК;
3) клонирование генов или генетических структур;
4) введение в клетку генов или генетических структур и син тез чужеродного белка.
Получение генов. Известны два способа искусственного синтеза генов вне организма — химический и ферментативный. Химическим путем в 1969 г. американский ученый Г. Корана с сотр. синтезировали ген аланиновой тРНК дрожжей. Этот ген включал 77 пар нуклеотидов, последовательность которых была
уже ранее расшифрована. Ученые сначала синтезировали фрагменты ДНК длиной от 5 до 12 нуклеотидов, затем соединили их в определенном порядке при помощи открытого к тому времени фермента лигазы. Однако ген аланиновой тРНК при введении в клетку кишечной палочки или бесклеточную среду не функционировал. Оказалось, что он не имел регуляторных элементов — промотора, где локализована точка инициации синтеза, и терминальных кодонов, которые дают сигнал о завершении синтеза иРНК. В 1976 г. Г. Корана с сотр. осуществили синтез гена супрессорной тирозиновой тРНК протяженностью 126 пар нуклеотидов. Были также синтезированы примыкающие к гену регу-ляторные участки: промотор (52 пары нуклеотидов) и терминатор (21 пара нуклеотидов) и прикрепленные к концам полимера тетрануклеотиды ААТТ и ТТАА. В этом случае искусственно синтезированный ген, встроенный в геном мутантного фага Т4, при введении в живую кишечную палочку оказался работоспособным^ В 1979 г. в нашей стране под руководством Ю. А. Овчинникова и М. Н. Колосова химическим путем с помощью ферментов были синтезированы гены гормонов человека и животных — энкефалина и брадикинина.
Химико-ферментативный синтез довольно широко применяют в генной инженерии для получения мелких генов. Для получения генов животных, растений и человека, размер которых составляет 1000—3000 нуклеотидов, этот метод слишком сложен и пока неосуществим. Ученые нашли более простой способ получения таких генов.
В 1970 г. Г. Темин с сотр. обнаружили фермент обратную транскриптазу (ревертазу). В 1972 г. было открыто, что некоторые онкогенные вирусы при помощи обратной транскриптазы могут синтезировать ДНК, используя в качестве матрицы иРНК. Дальнейшие исследования показали, что матрицами для образования копий ДНК могут служить не только РНК онкогенных вирусов, но и другие иРНК. Это открывало принципиальные возможности ферментативного синтеза любых индивидуальных генов (ДНК), используя их РНК-копии. Под ферментативным синтезом гена имеют в виду транскрибирование комплементарной нити ДНК (гена) на молекулах РНК в пробирке. Система для синтеза представляет собой раствор, в котором содержатся все четыре нуклеотида, входящих в состав ДНК, ионы магния, фермент обратная транскриптаза (ее получают из онкогенных вирусов) и матричная (информационная) РНК, кодированная геном, копию которого ставится задача снять. На иРНК обратная транскриптаза синтезирует комплементарную ей цепь ДНК, а затем на ней при помощи этого же фермента синтезируется вторая цепь ДНК. В результате получается ген по структуре такой же, как и тот, на котором была синтезирована иРНК.
Этим способом в лабораториях многих стран создан целый
ряд генов. В нашей стране йод руководством В. А. Энгельгардта был разработан проект «Ревертаза» — программа синтеза генов с помощью этого фермента. В осуществлении проекта участвовали ведущие отечественные и зарубежные институты. В итоге с 1974 по 1978 г. были синтезированы гены глобина голубя, кролика и человека, а также гены митохондрий печени крыс, часть гена, кодирующего иммунные белки мышей, и др.
Гены, синтезированные при помощи обратной транскриптазы, не имеют регуляторных участков и функционально неактивны. Поэтому транскрибирование копий ДНК рекомендуется проводить с про-мРНК, которые имеют все необходимые копии регуляторных частей гена.
Кроме изложенных способов ген можно получить путем выделения с помощью трансдуцирующих фагов. Таким путем в 1969 г. был впервые выделен лактозный ген кишечной палочки. Однако такой способ получения генов не всегда пригоден, так как предусматривает строгие места локализации фагов. Поэтому используются и другие приемы выделения фрагментов ДНК с нужными для переноса генами.
Рестриктирующие эндонуклеазы (рестриктазы). Важным событием для развития генной инженерии было открытие в клетках бактерий ферментов, способных разрезать молекулу ДНК в строго определенных местах. Ферменты эти называются рестрикти-рующими эндонуклеазами или рестриктазами, а процесс «разрезания» молекулы ДНК называется рестрикцией. С рестриктазами связаны дальнейшие успехи в молекулярной биологии. Они стали одним из главных элементов генной инженерии. Участок ДНК, узнаваемый определенной рестриктазой, включает специфическую последовательность из 6—8 пар оснований, являющихся палиндромом. Палиндромом называется последовательность ДНК, которая считывается одинаково в обоих направлениях, начиная от З'-конца каждой цепи. Например, рестриктаза E.coli под названием EcoRI узнает последовательность
Г I ААТТ Ц
Ц ТТАА t Г
и, прикрепляясь к ней, делает по одному однонитевому надрезу с обеих сторон, т. е. разрезает ее в симметричных участках, указанных стрелками. В результате двухцепочная молекула ДНК, если была кольцевой, вследствие разрыва приобретает линейное строение. На краях молекулы образуются липкие концы, представленные однонитевыми участками из четырех нуклеотидов: на одном конце будет последовательность ААТТ, на другом — ТТАА. При наличии липких концов молекула ДНК из линейной формы вновь способна замкнуться в кольцо без дополнительной обработки. Были обнаружены рестриктазы, узнающие самые разнообразные последовательности нуклеотидов. Например, рестриктаза EcoRII узнает последовательность ЦЦТГГ.
К настоящему времени известно свыше 200 рестриктаз, характерных для разных видов микроорганизмов. Это открывает новые возможности для экспериментаторов. Огромные молекулы высших организмов включают большое число мест разрезания для ферментов рестрикции. При обработке ДНК рестриктазами образуются многочисленные фрагменты ДНК, в которых представлены отдельные гены. Затем гены можно соединять в определенные структуры. Остающиеся в такой структуре разрывы нитей ДНК воссоединяются лигазой. Имеется и другой способ получения фрагментов ДНК с липкими концами. Он состоит в том, что выделенные или искусственно синтезированные участки ДНК обрабатывают эндонуклеазой, укорачивающей участки ДНК с обоих концов, после чего при помощи фермента полинуклеотидтран-сферазы пристраивают к этим концам последовательности адени-ловых и тимидиловых нуклеотидов. Длина липких поли-А и поли-Т составляет 50—100 нуклеотидов. При встраивании гена в вектор используются оба рассмотренных метода и часто совместно.
Рекйибинантные ДНК. Рекомбинантная ДНК — это искусственно полученная молекула ДНК. Она имеет форму кольца, включает ген (гены), составляющий объект генетических манипуляций, и так называемый вектор, обеспечивающий размножение рекомбинантной ДНК и синтез в клетке хозяина определенного продукта, кодируемого внесенным геном. Векторами являются те компоненты рекомбинантных ДНК, которые способны акцептировать чужеродные гены и обеспечивать их репликацию в клетках хозяина. Векторы должны обладать следующими особенностями: 1) иметь свойства регогакона; 2) нести субстратные участки для рестриктаз, иначе невозможна встройка ДНК; 3) содержать один или несколько маркирующих генов, чтобы по фенотипу можно было определить факт его передачи. Исследования показали, что эффективными векторами являются плазмиды. Из них в качестве векторов используются Col El, pSC 101 и др. Из вирусов в качестве векторов используют фаги X, SV 40 и их производные. Векторы придают рекомбинантной молекуле способность воспроизводиться независимо от хромосомы клетки бактерии.
Соединение вектора с фрагментом ДНК может производиться следующими путями: при помощи липких концов, образующихся в ДНК под действием эндонуклеаз рестрикции; дополнительного синтеза полинуклеотидных фрагментов каждой из цепей ДНК (поли-А и поли-Т); соединения тупых концов при помощи Т4-лигазы.
На рисунке 25 показаны ферментативный синтез гена и встраивание его в векторную плазмиду. Слева на иРНК при помощи обратной транскриптазы синтезируется цепь ДНК (кДНК), затем иРНК удаляют щелочью и при помощи ДНК-полимеразы достраивают вторую цепь кДНК, экзонуклеазой укорачивают обе цепи ДНК и концевой трансферазой пришивают к их концам поли-Т-последовательности. На этом же рисунке
МРНК
Дата добавления: 2015-12-16 | Просмотры: 763 | Нарушение авторских прав
|