АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Виды средних величин

Прочитайте:
  1. А. Метод стандартов или средних антропометрических данных
  2. В практике средних медицинских работников.
  3. Доверительные границы - границы средних (или относительных) величин, выход за пределы которых вследствие случайных колебаний имеет незначительную вероятность.
  4. Достоверности разности (различия) средних (или относительных) величин по критерию t.
  5. И ТИПИЧНОСТИ СРЕДНИХ ВЕЛИЧИН
  6. Операции при адгезивных (неперфоративных) средних отитах
  7. Определение доверительных границ средних и относительных величин
  8. Оценка достоверности статистических величин.
  9. П. 3.2.1. Метод средних

В медицинской практике наиболее часто используются следующие средние величины: мода, медиана, средняя арифметическая. Реже применяются другие средние величины: средняя геометрическая (при обработке результатов титрования антител, токсинов, вакцин); средняя квадратическая (при определении среднего диаметра среза клеток, результатов накожных иммунологических проб); средняя кубическая (для определения среднего объема опухолей) и другие.

Мода (Mo) - величина признака, чаще других встречающаяся в со­вокупности. За моду принимают варианту, которой соответствует наибольшее количество частот вариационного ряда.

Медиана (Me) - величина признака, занимающая срединное значе­ние в вариационном ряду. Она делит вариационный ряд на две рав­ные, части.

На величину моды и медианы не оказывают влияния числовые зна­чения крайних вариант, имеющихся в вариационном ряду. Они не всегда могут точно характеризовать вариационный ряд и применяют­ся в медицинской статистике относительно редко. Более точно ха­рактеризует вариационный ряд средняя арифметическая величина.

С редняя арифметическая (М, или ) - рассчитывается на осно­ве всех числовых значений изучаемого признака.

В простом вариационном ряду, где варианты встречаются только по одному разу, вычисляется средняя арифметическая простая по формуле:

 

, где V - числовые значения вариант,

n - число наблюдений,

Σ - знак суммы

В обычном вариационном ряду вычисляется средняя арифметичес­кая взвешенная по формуле:

 

, где V - числовые значения вариант.

Ρ - частота встречаемости вариант.

n - число наблюдений.

S - знак суммы

 

Пример расчета средней арифметической взвешенной приведен в таблице 4.

Таблица 4

Определение средней длительности лечения больных в специализированном отделении больницы

Число дней, V   Число больных, Ρ   V * Ρ  
     
     
     
     
     
     
     
     
     

n=95 S=1900,

В приведенном примере модой является варианта, равная 20 дням, поскольку она повторяется чаще других - 29 раз. Мо = 20. Порядковый номер медианы определяется по формуле:

Место медианы приходится на 48-ю варианту, числовое значение ко­торой равно 20. Средняя арифметическая, рассчитанная по формуле, равна также 20.

Средние величины являются важными обобщающими характеристика­ми совокупности. Однако за ними скрываются индивидуальные значе­ния признака. Средние величины не показывают изменчивости, колеб­лемости признака.

Если вариационный ряд более компактен, менее рассеян и все от­дельные значения расположены вокруг средней, то средняя величина дает более точную характеристику данной совокупности. Если вариа­ционный ряд растянут, отдельные значения значительно отклоняются от средней, т.е. имеется большая вариабельность количественного признака, то средняя менее типична, хуже отражает в целом весь ряд.

Одинаковые по величине средние могут быть получены из рядов с различной степенью рассеяния. Так, например, средняя длительность лечения больных в специализированной отделении больницы также бу­дет равна 20, если все 95 больных находились на стационарном ле­чении по 20 дней. Обе вычисленные средние равны между собой, но получены из рядов с разной степенью колеблемости вариант.

Следовательно, для характеристики вариационного ряда, помимо средней величины, необходима другая характеристика, позволяющая оценить степень его колеблемости.


Дата добавления: 2015-02-06 | Просмотры: 667 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.003 сек.)