АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

САНОГЕНЕЗ 2 страница

Прочитайте:
  1. A. дисфагия 1 страница
  2. A. дисфагия 1 страница
  3. A. дисфагия 2 страница
  4. A. дисфагия 2 страница
  5. A. дисфагия 3 страница
  6. A. дисфагия 3 страница
  7. A. дисфагия 4 страница
  8. A. дисфагия 4 страница
  9. A. дисфагия 5 страница
  10. A. дисфагия 5 страница

Компенсация метаболического ацидоза: активируются процессы детоксикации кислых веществ в печени. В желудке усиливается секреция водородных ионов, уменьшается выведение бикарбонатов с кишечным соком. Избыток водородных ионов связывается буферными системами. Активируются механизмы ионообмена: в костную ткань поступают ионы водорода, из костной ткани выходят катионы Са2+, Nа+, К+. Развивается гиперкалиемия, что приводит к сердечной недостаточности, аритмиям. Потеря ионов Са2+ вызывает декальцинацию костей, развитие остеопороза и остеомаляции. Происходит вазоконстрикция мозговых сосудов. Это приводит к ишемии головного мозга.

Лечение: устранение причины, вызвавшей ацидоз, трансфузия щелочных растворов.

Газовый (дыхательный) алкалоз

Это нарушение КОР характеризуется избыточным выведением СО2 из организма. Причины: высотная и горная болезнь, анемия, избыточная искусственная гипервентиляция, раздражение дыхательного центра, часто встречается у новорожденных. Пусковым механизмом развития газового алкалоза является гипокапния - уменьшение напряжение СО2 в артериальной крови. В норме выведение СО2 из организма составляет 200 мл/мин. Снижение РаСО2 вызывает уменьшение образования АВ и SВ. Сумма буферных оснований (ВВ) и дефицит буферных оснований (ВЕ) не изменяются. При декомпенсации ВВ снижается, величина ВЕ умеренно отрицательная. В почках уменьшается секреция водородных ионов, что вызывает снижение титрационной кислотности мочи и содержание солей аммония в моче. Нарушаются процессы ионообмена между внеклеточным пространством и катионами костной ткани. Развивается гипокалиемия, что приводит к нарушению сердечной деятельности. Развивается гипокальциемия, наблюдается повышение нервно-мышечной возбудимости (тетания), судороги. При газовом алкалозе происходит спазм мозговых сосудов. Это приводит к развитию ишемии головного мозга, обморочным состояниям.

Лечение: устранение причины, вызвавшей алкалоз. Вдыхание карбогена (5% СО2 + 95% 02).

Негазовый (метаболический) алкалоз

Метаболический алкалоз характеризуется абсолютным или относительным накоплением в организме щелочных валентностей. Это может наблюдаться при кишечной непроходимости, избыточном приеме щелочных минеральных вод, инфузии щелочных растворов. При рвоте потеря соляной кислоты и ионов хлора вызывает развитие гипохлоремической формы негазового алкалоза. Во всех случаях пусковым фактором является накопление бикарбонатов (АВ и SВ). Возрастает сумма буферных оснований (ВВ) и избыток буферных оснований (ВЕ). Избыток бикарбонатов связывается с ионами водорода, их секреция в почках уменьшается. Это приводит к снижению титрационной кислотности мочи и содержания солей аммония в моче. При избыточном накоплении ионов НСО3- эти ионы могут секретироваться. Тормозится функция дыхательного центра, умеренно возрастает напряжение в артериальной крови СО2

При метаболическом алкалозе включаются компенсаторные механизмы ионообмена: ионы водорода выходят из костной ткани, а ионы кальция поступают в костную ткань. Развивается гипокальциемия, что приводит к повышению нервно-мышечной возбудимости (тетании), особенно у новорожденных. С другой стороны, накопление ионов Са2+ в костной ткани вызывает хрупкость и ломкость костей. Может развиваться гипокалиемия, что вызывает развитие сердечно-сосудистой недостаточности. В связи с вазодилатацией мозговых сосудов возможны головная боль, головокружение, судороги. В желудке тормозится секреция соляной кислоты. В избытке выводятся бикарбонаты с кишечным соком. Тормозится выведение с желчью желчных кислот.

Лечение: устранение причины, вызвавшей алкалоз. Инфузия слабых кислых растворов, восстановление буферной емкости крови.

 

ПАТОФИЗИОЛОГИЯ УГЛЕВОДНОГО ОБМЕНА

 

В механизмах нарушения углеводного обмена выделяют 4 стадии:

1. Нарушение переваривания

2. Нарушение всасывания

3. Нарушение промежуточного обмена

4. Нарушение нейрогормональной регуляции

Нарушение переваривания

Переваривание углеводов до дисахаридов начинается в ротовой полости под влиянием амилазы слюны. Уже на этой стадии могут возникать нарушения. Расстройства могут возникать при воспалительных процессах слизистой ротовой полости, воспалении слюнных желез, наличии камней в протоках слюнных желез, врожденном дефекте желез. Углеводы в виде дисахаридов из ротовой полости поступают в желудочно-кишечный тракт, и под влиянием ферментов поджелудочной железы (амилазы, лактазы, мальтазы, карбоангидразы) расщепляются до глюкозы. Нарушение переваривания углеводов в кишечнике может быть связано с воспалительными процессами в поджелудочной железе и ее протоках, закупоркой протоков камнями, сдавлении или спазме протоков, интоксикациях, инфекционных процессах, ишемии поджелудочной железы. Проявляются нарушения переваривания углеводов в виде синдрома бродильной диспепсии, спазма кишечника, метеоризма, болей, развития диарреи.

Нарушение всасывания

Всасывание глюкозы тесно связано с процессами переваривания и происходит в тонком кишечнике. Ведущим механизмом всасывания являются процессы диффузии. Всасывание - процесс активный и энергозависимый. В процессе всасывания играют роль ионы натрия, белки-переносчики и Nа+ - К+ - зависимая АТФаза. Энергетическая недостаточность или дефицит ионов натрия отражается на активном транспорте глюкозы из кишечника в кровь. Основные причины нарушения всасывания: воспалительные процессы в кишечнике, энтериты, атрофия слизистой кишечника. Нарушение всасывания глюкозы сопровождается бродильной диспепсией, гипогликемией (снижение содержания глюкозы в крови менее 3,5-5,7 мМоль/литр), головной болью головокружением, слабостью. При уменьшении содержания глюкозы до 2,5 мМоль/литр и менее развивается гипогликемическая кома.

Иногда при воспалении в связи с повышенной проницаемостью кишечника глюкоза в избытке поступает в кровь и способствует развитию гипергликемии.

Нарушение промежуточного обмена

Нарушение этого этапа отражает расстройство тканевого обмена глюкозы. Выделяют 3 основных проявления нарушений:

1. Глюкоза в цикле Кребса в присутствии кислорода окисляется до углекислого газа и воды с образованием энергии в виде АТФ. Если возникает дефицит кислорода, то образуются промежуточные продукты, такие как лактат: развивается внутриклеточный лактат-ацидоз.

цикл Кребса ------- СО2 + Н2О + АТФ

 

Глюкоза 02

 

Лактат

 

2. Глюкоза при окислении проходит стадию образования пировиноградной кислоты и ацетил-коэнзима А (АцКоА). На стадии перехода пирувата в АцКоА играет роль фермент пируватдегидрогекназа. Активность этого фермента снижается при недостатке витамина В1. В организме накапливается пируват: он влияет на ЦНС, вызывая нарушение ее функции. Наблюдаются также расстройства функций периферической нервной системы в виде невритов, болей в мышцах, парезов, нарушений движений.

 

Глюкоза -------Пируват --------------------------------АцКоА --------- цикл Кребса

пируватдегидрогеназа

витамин В1

(тиамин)

 

3 На стадии промежуточного обмена нарушается процесс гликогенолиза (распада гликогена). В норме глюкоза при участии гексокиназы превращается в гликоген, который откладывается в печени. Гликоген под влиянием глюкозо-6-фосфатазы вновь распадается до глюкозы. При дефиците глюкозо-6-фосфатазы глюкоза в избытке переходит в гликоген и накапливается в печени. При этом содержание гликогена возрастает не только в клетках печени, гепатоцитах, но и в соединительной ткани, мышцах, миокарде, почках. Избыточное накопление гликогена приводит к развитию гликогеноза. При этом нарушаются функции различных систем. Дефицит глюкозо-6-фофатазы может быть наследственного характера. У детей в этом случае развивается болезнь Гирке.

Гексокиназа

Глюкоза Гликоген

Глюкозо-6-фосфатаза

 

 

Нарушение нейрогормональной регуляции

Нарушение на этой стадии проявляются в виде гипергликемии - увеличения содержания в крови глюкозы свыше 5,7 мМоль/литр. Основные формы гипергликемий: 1) алиментарная - при избыточном поступлении в организм углеводов, 2) эмоциональная - при стрессе, неврозах, 3) гормональная - при гиперсекреции большинства гормонов, 4) при дефиците инсулина, 5) при умеренной физической нагрузке, 6) при некоторых видах наркоза. Центральной патологией этой стадии является сахарный диабет. Основным симптомом заболевания является гипергликемия. Если содержание глюкозы в крови превышает нормальную величину в 2 раза, то глюкоза появляется в моче - развивается глюкозурия. Для сахарного диабета характерна полиурия - повышение диуреза. Полиурия развивается по механизму осмотического диуреза. Это приводит к развитию дегидратации и возбуждению. питьевого центра - повышенной жажде - полидипсии. Несмотря на гипергликемию, глюкоза не поступает в клетки. Это приводит к полифагии - избыточному потреблению пищи.

Согласно классификации экспертов Всемирной организации здравоохранения (ВОЗ) различают сахарный диабет I типа (инсулинозависимый, панкреатический) и II типа (инсулинонезависимый, внепанкреатический). В основе развития сахарного диабета I типа лежит дефицит выработки инсулина в b -клетках поджелудочной железы. Этот тип сахарного диабета чаще встречается у детей и в молодом возрасте до 35 лет. У людей старшего возраста чаще наблюдается инсулинонезависимый сахарный диабет (II типа). Развитию диабета II типа способствуют избыточный вес, эмоциональный стресс, наследственная предрасположенность.

Панкреатическая инсулиновая недостаточность

Это - инсулинозависимый сахарный диабет, диабет I типа.

Этиология

Среди этиологических факторов играют роль нарушение функции b -клеток инсулярного аппарата при психоэмоциональном стрессе, перенапряжении инсулярного аппарата, перегрузке организме глюкозой, аутоиммунные процессы. В b-клетках поджелудочной железы вырабатывается белок 64-КД. Иммунная система может отреагировать на этот белок как чужеродный, развивается аутоаллергический процесс. Существуют b-тропные вирусы, имеющие сродство к b-клеткам. Это вирусы, вызывающие краснуху, корь, респираторные аденовирусы. Они способны образовывать промежуточные антигены с белками b -клеток и вызывать развитие аутоаллергического процесса, что приводит к нарушению выработки инсулина. Этот процесс очень медленный и вызывает развитие скрытого сахарного диабета.

Для диагностики скрытого сахарного диабета используется сахарная нагрузка. При скрытом сахарном диабете содержание глюкозы в крови натощак составляет 4,5-5 мМоль/литр. После нагрузки алиментарной глюкозой через 1 час ее концентрация в крови резко увеличивается, но через 2 часа в отличие от здорового человека (I) не снижается до нормы (II).

Механизмы развития сахарного диабета I типа

В механизмах развития сахарного диабета I типа играют роль:

1. Нарушение трансмембранного переноса глюкозы в клетку

2. Нарушение механизмов внутриклеточного превращения глюкозы

Нарушение трансмембранного переноса глюкозы

Глюкоза поступает в клетку благодаря специфическому белку-переносчику, активность которого зависит от ионов натрия и Nа++ -насоса. Этот процесс энергозависим: играет роль Nа++ -зависимая АТФаза.

Перенос глюкозы в клетку обеспечивается также инсулином. При дефиците инсулина нарушается процесс переноса глюкозы в клетку и глюкоза остается в крови, развивается гипергликемия.

Нарушение механизмов внутриклеточного превращения глюкозы

 

Инсулин

- 4 раза - 9 раз

Гексокиназа Гликогенсинтетаза

ГЛЮКОЗА ГЛЮКОЗО-6-ФОСФАТ ГЛИКОГЕН

Глюкозо-6- фосфорилаза

фосфатаза

Пентозофосфатный

цикл СНС

 

НАДФ.Н Катехоламины

- 40%

Цикл Кребса ----------------- АцКоА ЖИРЫ

липаза Адреналин

 

Холестерин Кетоновые тела

(ацето-ацетат, b-оксибутират, ацетон)

 

Глюкоза в крови с участием гексокиназы превращается в глюкозо-6-фосфат.Глюкозо-6-фосфат с участием гликогенсинтетазы превращается в гликоген в печени. Гликоген с участием фосфорилазы расщепляется до глюкозо-6-фосфата. Часть глюкозо-6-фосфата при участии глюкозо-6-фосфатазы вновь превращается в глюкозу, а часть его переходит в АцКоА. АцКоА как промежуточный продукт обмена веществ включается в цикл Кребса, переходит в жир с участием никотинамиддинуклеотид фосфат восстановленный (НАДФ.Н). Этот фермент активируется в пентозофосфатном цикле. Активность этого цикла зависит от содержания глюкозо-6-фосфата. Из АцКоА образуется некоторое количество холестерина и кетоновых тел в виде ацето-ацетата, b -оксибутирата и ацетона.

При инсулиновой недостаточности в 4 раза снижается активность гексокиназы и одновременно активируется распад глюкозо-6-фосфата под влиянием глюкозо-6-фосфатазы. В 9 раз тормозится активность гликогенсинтетазы и активируется распад гликогена. При дефиците инсулина на 40% снижается активность цикла Кребса, в результате чего образуются промежуточные кислые метаболиты - лактат и пируват. Развивается внутриклеточный ацидоз. При инсулиновой недостаточности в 5 раз уменьшается активность пентозофосфатного цикла и НАДФ.Н. В связи с этим под влиянием липазы активируется распад жиров до жирных кислот. В этих условиях АцКоА преимущественно идет на образование холестерина и кетоновых тел. Развивается гиперкетонемия (свыше 100 m Моль/литр) и гиперкетонурия (свыше 1000 mМоль/литр). Накопление в крови кетоновых тел вызывает развитие кетоацидоза. Развитие кетоацидоза характерно при сахарном диабете у детей. При избыточном образовании холестерина развиваются атеросклеротические изменения микрососудов глазного дна. Развивается диабетическая ретинопатия, происходит снижение зрения. При сахарном диабете повышается сосудистая проницаемость, происходит нарушение соотношения плазменных белков, что приводи к гиалинозу. В результате всех этих процессов может развиваться ишемическая болезнь сердца, атеросклероз, почечная недостаточность.

В ряде случаев при сахарном диабете может наблюдаться жировая дистрофия печени. Это возникает в том случае, когда при уменьшении содержания гликогена в печени активируется СНС, освобождаются катехоламины, в частности, адреналин. Он активирует тканевую липазу и способствует распаду жиров до жирных кислот. Образовавшиеся нейтральные жирные кислоты поступают в печень, способствуя развитию жировой дистрофии печени. Таким образом, наличие при сахарном диабете гиперкетонемии, гиперкетонурии, внутриклеточного ацидоза и жировой дистрофии печени вызывает развитие синдрома кетоза. Если в печень вместо нейтральных жиров поступают фосфолипиды, то жировая дистрофия печени не развивается.

Инсулинонезависимый сахарный диабет

Это - внепанкреатический сахарный диабет, диабет II типа. Он не связан с поражением b-клеток. В этом случае содержание инсулина в крови нормальное.

В развитии этого типа сахарного диабета играют роль факторы риска: 1) избыточное питание (ожирение), 2) генетические дефекты инсулиновых рецепторов, 3) патология эндокринных желез.

Выделяют 2 механизма:

1. Механизмы инсулиновой резистентности клеток

2. Контринсулярный механизм

Механизмы инсулиновой резистентности клеток

Клетки имеют инсулиновые рецепторы. Они определяют активность перехода глюкозы в клетку. Инсулиновые рецепторы могут быть ареактивны. Они могут быть блокированы жирными кислотами. При избыточном питании углеводами рецепторы могут разрушаться и становиться аутоаллергенами. Аутоаллергены вызывают выработку аутоантител (Ig G) и, как следствие, образование патоиммунного комплекса, который блокирует рецепторы. Может быть генетический дефект рецепторов.

Контринсулярный механизм

 

Адреналин, глюкагон, тироксин

 

Глюкоза -------------------------------------------------------------- Гликоген

 

СТГ, АКТГ, кортизол

Аминокислоты

 

В этом механизме играют роль гормоны противоположные по своему действию инсулину. Это - СТГ, АКТГ, тироксин, кортизол, глюкагон, адреналин.

Адреналин, глюкагон и тироксин стимулируют распад гликогена до глюкозы (процесс гликогенолиза). Развивается гипергликемия. Избыточное образование глюкозы также возможно из аминокислот (процесс гликонеогенеза) вследствие стимуляции этого процесса под влиянием СТГ, АКТГ, кортизола.

ПАТОФИЗИОЛОГИЯ ЖИРОВОГО ОБМЕНА

Основные этапы нарушения жирового обмена:

1. Нарушение переваривания

2. Нарушение всасывания

3. Нарушение промежуточного обмена

4. Нарушение нейрогуморальной регуляции

Нарушение переваривания

Расщепление жиров в кишечнике происходит при участии панкреатической липазы. Секреция липазы и ее активность зависит от активности дигестивных гормонов (холецистокинина, секретина), которые вырабатываются в слизистой тонкой кишки. При воспалительных процессах желудочно-кишечного тракта выработка этих гормонов нарушается, что влияет на характер переваривания жиров. Секретин определяет количество выделяемого сока поджелудочной железой и липазы. Качество панкреатического сока и активность липазы определяется холецистокинином. Причинами нарушения выработки панкреатического сока и липазы являются воспалительные процессы в поджелудочной железе, сдавление и спазм протоков, камни в протоках. Важную роль в переваривании жиров играет желчь. Желчь эмульгирует жиры и они легче поддаются действию липазы. Холецитокинин способствует выходу желчи из печени в кишечник. Нарушение желчевыделения может быть связано с воспалительными процессами в печени и желчных путях, дискинезиями, желчнокаменной болезнью. Проявлениями нарушений процессов переваривания являются болевой синдром и развитие стеаторреи - жирного поноса. В норме из организма выводится около 10% жиров, при нарушении переваривания - до 50%.

Нарушение всасывания

Для нормального всасывания жиры должны связываться с желчными кислотами и образовывать мицеллы. Дальнейшее всасывание жирных кислот происходит с участием энтероцитов, которые извлекают жирные кислоты из мицелл. Около 5% жирных кислот поступает в кровь путем простой диффузии. Основная масса жиров ресинтезируется с образованием триглицеридов. В крови жирные кислоты связываются с белками (альбуминами) и образуют липопротеиновые комплексы. Основным местом их образования является печень. Нарушение всасывания жирных кислот наблюдается при воспалении желудочно-кишечного тракта (энтериты), дистрофических процессах в слизистой кишечника, при увеличении содержания ионов кальция, связывающего жирные кислоты и затрудняющего поступления их из кишечника в кровь, при гиповитаминозе А и С. Нарушение всасывания жирных кислот приводит к гиполипемии - снижению содержания липидов в крови. Развивается гипоэргоз, нарушается всасывание жирорастворимых витаминов - А, Д, К, Е, развивается полигиповитаминоз. Нарушение всасывания липидов сопровождается диспепсией

Нарушение промежуточного обмена жиров

Расстройства этого этапа проявляются в виде:

1. Гиперлипемии

2. Кетоза

3. Нарушения пероксидного окисления липидов

Гиперлипемия

Гиперлипемия - это повышение уровня липидов в крови свыше 7±4 г/л. Жирные кислоты в крови связаны с белками и представлены липопротеинами.

Основные формы гиперлипемий

1. Алиментарная гиперлипемия

2. Транспортная гиперлипемия

3. Ретенционная гиперлипемия

4. Идиопатическая гиперлипемия

Алиментарная гиперлипемия

Она возникает при избыточном поступлении в организм жирной пищи. Количество нейтральных жиров в крови возрастает через 3 часа.

Транспортная гиперлипемия

Жир

Депо --------------------------Кровь

Липаза

Стресс ----Адреналин Тироксин

СТГ

 

В основе этого вида гиперлипемии лежит рефлекторный механизм. Происходит мобилизация жира из депо в кровь. Транспортная гиперлипемия развивается при стрессе, неврозах, кровопотере. Одним из механизмов такой гиперлипемии является уменьшение содержания в печени гликогена при сахарном диабете. Распад гликогена способствует активации симпатической нервной системы, освобождению адреналина и стимуляции клеточной липазы, которая расщепляет жиры до жирных кислот. Жирные кислоты поступают в кровь.

 

Гликоген ------СНС -------Адреналин ----------Липаза

 

Ретенционная гиперлипемия

Эта форма характеризуется задержкой липидов в циркулирующей крови. Липиды в крови связаны с белками и циркулируют в виде липопротеинов. В крови липопротеины представлены в виде липопротеинов очень низкой плотности (ЛПОНП), липопротеинов низкой плотности (ЛПНП) и липопротеинов высокой плотности (ЛПВП). Они содержат разное количество холестерола и фосфолипидов. ЛПЛНП и ЛПНП сожержат преимущественно холестерол, ЛПВП - фосфолипиды. В норме липопротеиновый комплекс, подходя к клетке, подвергается действию фермента - липопротеинлипазы. Комплекс расщепляется и жирные кислоты поступают в клетку.

Липопротеины

Кровь ----------------------------------Жирные кислоты -----Клетка

липопротеинлипаза

Инсулин Гепарин

Желчные кислоты,

избыток жирных кислот

 

Липопротеинлипаза (ЛПЛ) синтезируется в эпителии капилляров. Она активируется гепарином. При снижении образования гепарина в тучных клетках легких активность липопротеинлипазы снижается, липопротеиновый комплекс не расщепляется и жирные жислоты в комплексе с белками остаются в крови. Активность ЛПЛ снижается также при инсулиновой недостаточности, при ингибировании фермента желчными кислотами, избытком жирных кислот. Липопротеиновый комплекс не образуется при дефиците белков - альбуминов. В этом случае свобоные жирные кислоты накапливаются в крови и не поступают в клетку.

Идиопатическая гиперлипемия

В основе этой формы лежит наследственная недостаточность липопротеинлипазы, генетический дефект синтеза белка.

Гиперлипемия является одним из факторов риска ряда заболеваний: ишемической болезни сердца, атеросклероза, сахарного диабета, опухолевого роста.

Кетоз

В понятие "кетоз" входит накопление в крови кетоновых тел (гиперкетонемия), в моче (гиперкетонурия), жировая дистрофия печени, ацидоз. Избыточное образование кетоновых тел обусловлено нарушением окисления белков, жиров и углеводов в цикле Кребса и нарушением перехода ацетилкоэнзима А (АцКоА) в жиры. В результате этого АцКоА идет на образование кетоновых тел (b-оксибутирата, ацето-ацетата, ацетона).

Жиры

Белки b -оксибутират

Жиры АцКоА ацето-ацетат

Углеводы ацетон

Цикл Кребса

 

В норме количество кетоновых тел в крови составляет около 100 мкмоль/литр. Если их содержание становится выше, то это свидетельствует о развитии гиперкетонемии. В моче содержание кетоновых тел не превышает 1000 мкмоль/литр. Если их выводится больше, чем 1000 ммоль/литр, то это указывает на гиперкетонурию. Избыточное накопление кетоновых тел в организме возникает при гипоксии, стрессе, переутомлении, инфекции, инсулиновой недостаточности. При сахарном диабете жировая дистрофия печени возникает при активации клеточной липазы под влиянием адреналина и СТГ. Жирные кислоты поступают из депо в кровь, затем в печень. Развивается жировая дистрофия печени, миокарда.

Нарушение пероксидного окисления липидов

Пероксидное окисление липидов (ПОЛ) осуществляется с участием кислорода. При гипоксии нарушается окисление липидов, активируется образование свободных радикалов. Преимущественно нарушается окисление ненасыщенных жирных кислот.

Оксигеназы

Ненасыщенные жирные кислоты ------------------------ Гидроперекиси липидов

Цх Р-450

 

Свободные радикалы (ROO, RO2-, О2-, Н2 О2) -----------------------

Накопление гидроперекисей липидов и свободных радикалов наблюдается при нарушении микросомального окисления, дефиците цитохрома Р-450 (Цх Р-450). Происходит повреждение различных компонентов клетки - нуклеиновых кислот, белков, мембран клеток. Это способствует развитию инфаркта миокарда, злокачественного роста, лучевой болезни.

Антиоксидантные системы: токоферол, каротины; ферменты разрушающие пероксиды (каталаза, пероксидаза, супероксиддисмутаза), система глутатиона и механизмы, разрушающие белки и восстанавливающие дезоксирибонуклеиновые кислоты.

Нарушение нейрогуморальной регуляции

Этот этап нарушения жирового обмена проявляется в виде:

1. Ожирения

2. Исхудания

Ожирение

Избыточное отложение жира в жировой ткани занимает ведущее место среди других нарушений обмена веществ. Среди взрослого населения от 30% до60% лиц имеет избыточный вес.

По этиологии выделяют ожирение трех видов: церебральное (16-20% случаев), алиментарное (55-66%), гормональное (около 20%).

По характеру накопления жира различают гиперпластическое ожирение, характеризующееся увеличением количества жировых клеток, и гипертрофическое, связанное с увеличением объема жировых клеток.

 

Различают 4 степени ожирения:

1 степень - увеличение веса на 30%

2 степень - увеличение веса на 50%

3 степень - увеличение веса на 100%

4 степень - увеличение веса на 200%

Механизмы ожирения

Различают:

1. Алиментарное ожирение

2. Метаболическое ожирение

Алиментарное ожирение

Алиментарное ожирение возникает при переедании, гиподинамии. В основе его развития лежит повышение реактивности периферических и центральных рецепторов. Повышается порог возбудимости рецепторов желудочно-кишечного тракта, что приводит к изменению реактивности центральных рецепторов. Повышается тонус пищевого центра, в частности, вентролатерального ядра гипоталамуса (центр голода). С другой стороны, снижается возбудимость центра сытости (вентромедиальное ядро гипоталамуса).

Метаболическое ожирение

В основе этого механизма лежат нейрогормональные механизмы.

Основные виды метаболического ожирения

1. Церебральное (гипоталамическое)

2. Гипофизарное

3. Гипотиреоидное

4. Панкреатическое

5. Гипогенитальное

Ожирение при участии нейрогормональных механизмов обусловлено избыточным образованием жира или задержкой его в жировых депо.

Избыточное образование жира

Избыточное образование жира связано с активацией пентозо-фосфатного цикла (ПФЦ) и возрастанием активности фермента никотинамиддинуклеотид фосфат восстановленный (НАДФ.Н). Активация ПФЦ может быть наследственного происхождения, при гиперсекреции инсулина, образовании жира из аминокислот.

АцКоА

Глюкоза, аминокислоты -----------------------------------------жир

НАДФ.Н

 

ПФЦ ---------------- Инсулин

 

Задержка жира в депо

Задержка жира в жировых депо обусловлена снижением активности фермента липазы, нарушением расщепления жиров и замедлением поступления липидов в кровь. Угнетение активности липазы может возникать при снижении тонуса симпатической нервной системы и уменьшении выработки адреналина, при гиперсекреции инсулина.

Жировые депо ---------------------кровь

Тироксин, СТГ липаза ----------адреналин -----СНС

Исхудание

Исхудание обусловлено уменьшением поступления и всасывания жиров (голодание, воспалительные процессы желудочно-кишечного тракта) и нарушением отложения жиров в депо, при нарушении нейрогормональной регуляции жирового обмена, связанное с повышением активности симпатической нервной системы, при стрессе.

 

Патофизиология водно-солевого обмена

Функции воды в организме:

1. В жидкой среде происходят обменные процессы

2. Вода входит в состав слюны, желудочного и кишечного соков, крови, лимфы

3. Вода выводит из организма метаболиты

4. Вода выполняет механическую функцию

5. Вода выполняет терморегуляторную функцию

6. Вода выполняет транспортную функцию

Содержание воды у новорожденного составляет 70% массы тела.

Вода - 70%

Внеклеточная Внутриклеточная

вода - 40% вода - 30%

 

У взрослых содержание воды меньше и составляет 60% массы тела.

Вода - 60%

Внеклеточная Внутриклеточная

вода - 20% вода - 40%

 

При этом основную массу воды (40%) составляет внутриклеточная вода.

Патология водно-солевого обмена связана с нарушением обмена внутриклеточной воды. Уменьшение или увеличение ее на 10% опасно для клеток, на 20% - смертельно, клетки погибают.


Дата добавления: 2015-02-06 | Просмотры: 596 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.029 сек.)