АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

АНАЛИЗ ВОЛНЫ ВОЗБУЖДЕНИЯ. ИСТОРИЯ ИЗУЧЕНИЯ БИОЭЛЕКТРИЧЕСКИХ ЯВЛЕНИЙ В ЖИВЫХ ТКАНЕЙ

Прочитайте:
  1. E) биохимические анализы крови.
  2. E) биохимические анализы крови.
  3. I. Иммунология. Определение, задачи, методы. История развитии иммунологии.
  4. I. Противовоспалительная терапия (для быстрого уменьшения боли, явлений воспаления в суставе).
  5. II. Конкретные цели изучения темы.
  6. II. Конкретные цели изучения темы.
  7. II.История народной медицины на Руси
  8. III ИСТОРИЯ ЖИЗНИ
  9. III. ИСТОРИЯ НАСТОЯЩЕГО ЗАБОЛЕВАНИЯ
  10. IV. Идиопатические заболевания пародонта с прогрессирующим лизисом тканей пародонта.

Если на нерв или мышцу на­нести раздражение выше порога возбуждения, то МПП нерва или мышцы быстро уменьшится и на короткий промежуток времени (миллисекунда) произойдет перезарядка мембраны: ее внутренняя сторона станет заряженной положительно относительно наружной. Это кратковременное изменение МПП, происходящее при возбуж­дении клетки, которое на экране осциллографа имеет форму оди­ночного пика, называется мембранным потенциалом действия (МПД).

МПД в нервной и мышечной тканях возникает при снижении абсолютной величины МПП (деполяризации мембраны) до некото­рого критического значения, называемого порогом генерации МПД. В гигантских нервных волокнах кальмара МПД равен - 60 мВ. При деполяризации мембраны до -45 мВ (порог генерации МПД) воз­никает МПД (рис. 1.15).

 

Рис. 1.15 Потенциал

действия нервного волокна (А) и изменение проводимости мембраны для ионов натрия и калия (Б).

 

Во время возникновения МПД в аксоне кальмара сопротивление мембраны уменьшается в 25 раз, с 1000 до 40 Ом.см2, тогда как электрическая емкость не изменяется. Указанное снижение сопро­тивления мембраны обусловлено увеличением ионной проницаемости мембраны при возбуждении.

По своей амплитуде (100-120 мВ) МПД на 20-50 мВ превышает величину МПП. Другими словами, внутренняя сторона мембраны на короткое время становится заряженной положительно по отношению к наружной, — "овершут" или реверсия заряда.

Из уравнения Гольдмана следует, что лишь увеличение проница­емости мембраны для ионов натрия может привести к таким изме­нениям мебранного потенциала. Значение Ек всегда меньше, чем величина МПП, поэтому повышение проницаемости мембраны для К+ будет увеличивать абсолютное значение МПП. Натриевый равно­весный потенциал имеет знак "плюс", поэтому резкое увеличение проницаемости мембраны для этих катионов приводит к перезарядке мембраны.

Во время МПД увеличивается проницаемость мембраны для ионов натрия. Расчеты показали, что если в состоянии покоя соотношение констант проницаемости мембраны для К+, Na+ и СГ равно 1:0,04:0,45, то при МПД - Рк: PNa: Р = 1: 20: 0,45. Сле­довательно, в состоянии возбуждения мембрана нервного волокна не просто утрачивает свою избирательную ионную проницаемость, а, напротив, из избирательно проницаемой в покое для ионов калия она становится избирательно проницаемой для ионов натрия. Уве­личение натриевой проницаемости мембраны связано с открыванием потенциал-зависимых натриевых каналов.

Механизм, который обеспечивает открывание и закрывание ион­ных каналов, получил название ворот канала. Принято различать активационные (т) и инактивационные (h) ворота. Ионный канал может находиться в трех основных состояниях: закрытом (т-ворота закрыты; h-открыты), открытом (т- и h-ворота открыты) и инак-тивированном (т-ворота открыты, h-ворота закрыты) (рис.).

Рис. Схема положения активационных (т) и инактивационных (h) ворот натриевых каналов, соответствующие закрытому (покой, А), открытому (активация, Б) и инактивированному (В) состояниям.

Деполяризация мембраны, вызываемая раздражающим стимулом, например, электрическим током, открывает т-ворота натриевых ка­налов (переход из состояния А в Б) и обеспечивает появление направленного внутрь потока положительных зарядов — ионов натрия. Это ведет к дальнейшей деполяризации мембраны, что, в свою очередь, увеличивает число открытых натриевых каналов и, следовательно, повышает натриевую проницаемость мембраны. Воз­никает "регенеративная" деполяризация мембраны, в результате ко­торой потенциал внутренней стороны мембраны стремится достичь величины натриевого равновесного потенциала.

Причиной прекращения роста МПД и реполяризации мембраны клетки является: а) увеличение деполяризации мембраны, т.е. когда Ем -> ENa, в результате чего снижается электрохимический градиент для ионов натрия, равный Ем -> ENa. Другими словами, уменьшается сила, "толкающая" натрий внутрь клетки; б) деполяризация мембра­ны порождает процесс инактивации натриевых каналов (закрывание h-ворот; состояние В канала), который тормозит рост натриевой проницаемости мембраны и ведет к ее снижению; в) деполяризация мембраны увеличивает ее проницаемость для ионов калия. Выходя­щий калиевый ток стремится сместить мембранный потенциал в сторону калиевого равновесного потенциала.

Снижение электрохимического потенциала для ионов натрия и инактивация натриевых каналов уменьшает величину входящего на­триевого тока. В определенный момент времени величина входящего тока натрия сравнивается с возросшим выходящим током — рост МПД прекращается. Когда суммарный выходящий ток превышает входящий, начинается реполяризация мембраны, которая также имеет регенеративный характер. Начавшаяся реполяризация ведет к закры­ванию активационных ворот (т), что уменьшает натриевую прони­цаемость мембраны, ускоряет реполяризацию, а последняя увеличи­вает число закрытых каналов и т.д.

Фаза реполяризации МПД в некоторых клетках (например, в кар-диомиоцитах и ряде гладкомышечных клеток) может замедляться, формируя плато ПД, обусловленное сложными изменениями во вре­мени входящих и выходящих токов через мембрану. В последей­ствии МПД может возникнуть гиперполяризация или/и деполяриза­ция мембраны. Это так называемые следовые потенциалы. Следовая гиперполяризация имеет двоякую природу: ионную и метаболичес­кую. Первая связана с тем, что калиевая проницаемость в нервном волокне мембраны остается некоторое время (десятки и даже сотни миллисекунд) повышенной после генерации МПД и смещает мем­бранный потенциал в сторону калиевого равновесного потенциала. Следовая гиперлоляризация после ритмической стимуляции клеток связана преимущественно с активацией электрогенного натриевого насоса, вследствие накопления ионов натрия в клетке.

Причиной деполяризации, развивающейся после генерации МПД, является накопление ионов калия у наружной поверхности мембра­ны. Последнее ведет к увеличению МП П.

С инактивацией натриевых каналов связано важное свойство нервного волокна, называемое рефрактерностью. Во время абсо­лютного рефрактерного периода нервное волокно полностью утра­чивает способность возбуждаться при действии раздражителя любой силы. Относительная рефрактерность, следующая за абсолютной, ха­рактеризуется более высоким порогом возникновения МПД.

Представление о мембранных процессах, происходящих во время возбуждения нервного волокна, служит базой для понимания и яв­ления аккомодации. В основе аккомодации ткани при малой кру­тизне нарастания раздражающего тока лежит повышение порога воз­буждения, опережающее медленную деполяризацию мембраны. По­вышение порога возбуждения почти целиком определяется инакти­вацией натриевых каналов. Роль повышения калиевой проницаемос­ти мембраны в развитии аккомодации состоит в том, что оно при­водит к падению сопротивления мембраны. Вследствие снижения сопротивления скорость деполяризации мембраны становится еще медленнее. Скорость аккомодации тем выше, чем большее число натриевых каналов при потенциале покоя находится в инактивированном состоянии, чем выше скорость развития инактивации и чем выше калиевая проницаемость мембраны.

История изучений биоэлектрических явлений в тканях

Первые попытки по изучению биоэлектрических явлений («животного электричества») известны с ХVIII века, когда были выполнены исследования на «электрических» органах рыб (Адансон, 1751; Целп, 1773; Вильямсон, 1775 и др.). Все эти исследования подготовили благоприятную почву для трудов Гальвани, заложивших основу электрофизиологии как вполне самостоятельной области науки. В 1791 г. им были опубликованы результаты исследований, в том числе знаменитого «балконного» опыта (Рис. 5).

 

Рис. 5 Балконный опыт Гальвани (по Латманизовой Л.В.).

 

При подвешивании нервно - мышечного препарата на железную решетку с помощью медного крючка, проходящего через спинной мозг препарата, имело место сокращение мышц лапки каждый раз, когда эта лапка соприкасалась с железной решеткой балкона.

Гальвани считал, что причиной сокращения мышцы в данном случае является электричество, причем, источник этого электричества ученый видел именно в нервно - мышечном препарате лягушки.

Однако ему возразил его знаменитый соотечественник - физик А. Вольта, который считал, что в «балконном» опыте мышца является лишь чувствительным «электрометром» электричества, порождаемого контактной разностью потенциалов разных металлов, используемых в опытах Гальвани. Позднее, защищая свою точку зрения от возражений оппонентов, Гальвани воспроизводит различные модификации опытов, в которых сокращение мышцы вызывалось путем набрасывания нерва с помощью стеклянной палочки на поврежденный и неповрежденный участок мышцы (рис.6).

 

Рис. 6 Модификация «балконного» опыта Гальвани.

Позднее открытия Гальвани были подтверждены в работах Маттеучи (1837). Однако Маттеучи обнаружил явление вторичного или индуцированного сокращения: при помещении нерва одного нервно-мышечного препарата на мышцу другого препарата и раздражителя нерва этого препарата, Маттеучи наблюдал сокращение мышцы обоих препаратов (рис.7).

 

Рис.7 Опыт Маттеучи: вторичное (индуцированное) сокращение мышцы.

 

На основании этого явления Маттеучи выдвинул предположение об изменении электрических зарядов нервной ткани при ее возбуждении.

Дальнейшее развитие представлений о природе «животного электричества» связано с внедрением в физиологию экспериментальных приемов и техники. В 1820 году Швейгер сконструировал гальванометр, усовершенствовав который итальянский физик Нобиле применил его в 1827 г. для проверки опытов Гальвани. Однако наибольший интерес представляют работы Э.Дюбуа-Реймона, выполненные в 1840-1860 гг. В этих работах благодаря высокочувствительному гальванометру и ряду других технических новшеств удалось впервые определив электрические процессы в мышце, зарегистрировав потенциал наружной и внутренней поверхности мембраны клеток. Впервые он установил, что наружная мембрана заряжена положительно по отношению к внутренней, и эта разность потенциалов изменяется при сокращении мышцы.

Позднее, в 1896 г. В.Ю. Чаговец впервые высказал гипотезу о ионном механизме электрических потенциалов в живых клетках и сделал попытку применить для их объяснения теорию электролитической диссоциации Аррениуса. В 1902 г. Бернштейном была развита мембранно-ионная теория, согласно которой клеточная поверхность представляет собой полупроницаемую мембрану, которая в состоянии физиологического покоя проницаема для ионов калия и практически непроницаема для остальных вне - и внутриклеточных ионов.

В 1936 году английский зоолог Джон Юнг обнаружил у кальмаров и каракатиц необычайно толстые аксоны, которые впоследствии стали называть "гигантскими аксонами". Их диаметр превышал 0,5 мм, что позволило достаточно легко вводить в них микроэлектроды, проводить химический анализ содержащейся в них жидкости, вводить в них различные растворы и т.д. «Гигантские аксоны» стали излюбленным объектом для изучения биоэлектрических явлений в тканях, с их помощью было получено много новых и интересных данных.

Современные представления о природе биоэлектрических явлений в тканях базируются на результатах работ Алана Ходжкина, Эндрью Хаксли, Бернарда Катца. Эти ученые в 40-50 годах нашего века модифицировали и экспериментально обосновали мембранно-ионную теорию Ю. Бернштейна. В настоящее время их взгляды о природе биоэлектрических явлений пользуются всеобщим признанием. Согласно их представлениям, наличие электрических потенциалов в живых клетках обусловлено различной концентрацией ионов Na+, K+, Ca2+ и Cl-внутри и вне клетки, а также различной проницаемостью для них клеточной мембраны. За разработку теории ионного механизма возбуждения эти авторы были удостоены звания лауреатов Нобелевской премии.


Дата добавления: 2015-05-19 | Просмотры: 3862 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)