АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология
|
Обратная функция
Пусть – некоторая функция, и - ее область определения и область значений соответственно. Если любым различным значениям аргумента соответствуют различные значения функции, то есть из , , то, как известно из § 8, отображение f, определяемое этой функцией, обратимо, и для него существует обратное отображение множества на множество . Это отображение называется обратной функцией к функции , то есть обратная функция такова, что . Функция и обратная для нее функция называются взаимно-обратными функциями. Заметим, что , а графики взаимно-обратных функций и симметричны относительно прямой – биссектрисы первого и третьего координатных углов. Обратная функция всегда существует для строго монотонной функции, которая каждое свое значение принимает только один раз.
Чтобы найти аналитическое выражение для функции , обратной к функции , нужно решить уравнение относительно х, и если при этом получается несколько значений х, то выбрать те значения, которые принадлежат . Таким образом получают равенство , в котором обычно заменяют у на х и х на у.
Обратные функции для функций нужно рассмотреть на практических занятиях.
функцию. Найдем ее. Имеем т.е. Отметим, что каждое свое
| | Заметим, что условие строгой монотонности функции является достаточным, но не необходимым условием существования обратной функции. Пусть, например, Эта функция не монотонна на , однако имеет обратную
значение функция принимает только один раз (такие функции называются инъективными).
Дата добавления: 2015-01-18 | Просмотры: 819 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|