АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Механизм действия алнилирующцх ядов

Прочитайте:
  1. A) действия медиаторов воспаления
  2. A) снижением бактерицидного действия соляной кислоты
  3. II.Механорецепторные механизмы регуляции. Легочно-вагусная регуляция дыхания
  4. III). Сосудорасширяющие препараты прямого миотропного действия (миотропные средства).
  5. III. Психосоциальные воздействия
  6. III. Сердечная недостаточность, понятие, формы, патофизиологические механизмы развития
  7. L. Механизмы терморегуляции человека
  8. V2: Мышцы, фасции и топография бедра, голени и стопы. Механизм движений в суставах нижней конечности. Разбор лекционного материала.
  9. VII. Побочные действия средств, применяемых для лечения заболеваний глаз
  10. X.3.3. Действия в случае профессионального контакта

В патохимической классификации химические вещества данной группы именуются алкилирующими ядами. Под алкилированием понимается процесс вытеснения молекулой яда функциональных групп белка вообще и нуклеопротеидов в особенности.

 

Различают алкилирующее действие общее и избирательное. К общим алкилирующим агентам относятся вещества, имеющие один или несколько активных радикалов следующего строения:

 

1) производные сернистого иприта: R _ S _ CH2 _ CH2 _ Cl

 

2) производные азотистого иприта:

 

 

3) эпоксиды:

 

 

4) этиленимины:

 

 

5) эфиры метансульфокислоты:

 

 

Ко второй группе кожно-резорбтивных ядов относятся так называемые тиоловые яды. Это такие вещества, которые избирательно алкилируют только тиоловые группы метаболитов тканей. Подобные свойства проявляют соединения трехвалентного мышьяка, и ряд металлоорганических соединений.

 

Существует три теории механизма действия, которые необходимо рассматривать в совокупности.

 

1. Механизм действия ипритов основан на вытеснении молекулой яда водородных групп у атома азота азотистых оснований нуклеопротеидов (нуклеотическое действие).

 

Как известно, дезоксирибонуклеиновая кислота (ДНК) представляет собой цепь дезоксирибонуклеотидов, которые в свою очередь, состоят из пентозного сахара, остатка фосфорной кислоты и азотистого основания. Согласно многочисленным исследованиям, наибольший интерес представляет реакция ипритов с азотистыми основаниями ДНК (аденин-тимин, гуанин-цитозин). Алкилирующие вещества охотнее всего вступают в реакцию с гуанином. Алкилирование гуанина приводит к появлению неустойчивого четвертичного азота. В результате сахарно-фосфорно-азотистый каркас ДНК распадается, что приводит к деполимеризации нуклеопротеидов.

 

2. Механизм действия основан на внутриклеточной активизации молекулы иприта с образованием в клетке ониевых соединений и в последующем активных радикалов (лучеподобное действие) [Родневич].

 

При исследовании гидролиза иприта было показано, что в начале гид

ролиза образуются так называемые ониевые соединения (ониевые ионы). Сернистый иприт при гидролизе образует сульфониевые ионы, а азотистый иприт этиленимониевые ионы. Эти ионы обладают большой реакционной способностью, благодаря чему их сравнивают с продуктами радиолиза воды. Ониевые ионы могут вступать во взаимодействие с азотом пуринового ядра аденина и гуанина, входящих в структуру нуклеиновых кислот, и алкилировать их и даже «сшивать» цепи нуклеиновых кислот. В результате этого взаимодействия весьма существенно расстраивается функционирование нуклеиновых кислот, что приводит к нарушению синтеза белка, и к подавлению регенерации тканей. Следствием повреждения ДНК является нарушение хромосомного аппарата, и изменение наследственных признаков.

 

Кроме того, ониевые кислоты могут вызывать появление ионов Н, ОН, НО2, которые также весьма реакционноспособны и оказывают действие на клетки тканей, которое напоминает повреждающее действие ионизирующих излучений.

 

Однако, между действием ипритов и проникающей радиацией имеются существенные отличия. Р.К. Лякявичус (1967) приводит данные, показывающие, что ядра клеток более чувствительны к иприту, чем к проникающей радиации.

 

При воздействии проникающей радиации на ядра клеток наблюдаются и хромосомные, и хроматидные аберрации. При действии ипритов наблюдаются только хроматидные аберрации. Цитогенетические эффекты ипритов наблюдаются не ранее, чем через 8 часов, а при облучении они обнаруживаются почти сразу. Кислород не отягощает интоксикации алкилирующими соединениями, а при воздействии ионизирующего излучения количество аберраций в присутствии кислорода возрастает.

 

3. Теория мостиковых связей (аллергогенное действие). Механизм действия основан на блокировании полипептидной цепи ипритным «замком».

 

Иприты с двумя или тремя хлорэтильными радикалами более активны. чем с одним хлорэтильным радикалом. Следовательно, бифункциональные иприты взаимодействуют с метаболитом двумя концами своей молекулы, как бы сшивая метаболит, как бы запирая на «замок», образуя мостиковую связь в полипептидном стержне или в нуклеотиде. Имеет место полимеризация ипритных молекул после соединения их с белками. Понятно, что такие белки будут лишены своих реакционных способностей и, по-видимому, они-то и становятся аутоантигенами, определяя некоторые аллергические эффекты ипритов.

 

Варианты повреждения ДНК ипритом:

 

 

1. Отщепление азотистых оснований.

 

2. Взаимодействие с остатком фосфорной кислоты.

 

3. Разрыв цепи ДНК.

 

4. Взаимодействие с азотистыми основаниями.

 

5. Сшивание 2-х спиральной цепи ДНК.

 

6. Ошибка спаривания азотистых оснований.

 

Действие ипритов на ДНК ведет к токсигенетическим нарушениям, что проявляется:

 

1) нарушение митозов (цитостатическое действие);

 

2) нарушение синтеза белков и ферментов;

 

3) злокачественным повреждением клеток (бластомогенное действие);

 

4) нарушение развития эмбрионов и плода (тератогенное действие);

 

5) нарушением иммунитета;

 

6) нарушением генетических признаков клеток (мутагенное действие).

 

Особенности механизма действия алкилирующих ядов

 

с избирательным действием (люизит)

 

В лабораториях Питерса (Англия) и А.И. Черкеса (Киев) было показано. что соединения с трехвалентным мышьяком охотно вступают в реакцию со свободными аминокислотами, имеющими сульфгидрильные группы (цистеин):

 

Однако более устойчивую связь трехвалентный мышьяк образует с полипептидами:

 

Проникая в ткани, люизит повреждает те ферментные системы, которые богаты тиоловыми группами. Наиболее ранимой оказалась пируватокси дазная система, в которую входит липоевая кислота, имеющая две тиоловые группы.

 

По мнению Питерса (1963). А. И. Черкеса (1964), дигидролипоевая кислота, является первичным объектом воздействия группы тиоловых ядов. Гидролазы (в том числе и холинэстеразы), оксидазы (пируватоксидазная система) и дегидрогеназы, ряд ферментов АТФ, наконец, холинорецепторы содержат тиоловые группы и могут повреждаться при проникновении в ткани люизита.

 

Кроме того при действии тиоловых ядов отмечается отсутствие лучеподобного действия.

 


Дата добавления: 2015-02-05 | Просмотры: 629 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.005 сек.)