АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

ГИПОКСИЯ (КИСЛОРОДНОЕ ГОЛОДАНИЕ)

Прочитайте:
  1. B) гипоксиях
  2. III.4. Гипобарическая гипоксическая гипоксия
  3. Гемическая (кровяная) гипоксия.
  4. Гипероксическая гипоксия
  5. Гипоксическая гипоксия
  6. ГИПОКСИЯ
  7. Гипоксия
  8. Гипоксия
  9. Гипоксия
  10. ГИПОКСИЯ

 

Для нормальной жизнедеятельности любого биологического объекта требуется непрерывный обмен веществом, энергией и информацией. Энергетические потребности реализуются путем использования высокоэргических фосфорных соединений (АТФ, креатинфосфата и других), которые синтезируются при участии главным образом кислорода. Окисление основного энергетического субстрата глюкозы осуществляется тремя путями:

1. анейробный гликолиз (ферментами цитоплазмы);

2. тканевое дыхание и связанное с ним окислительное фосфорилирование;

3. пентозо-гексозомонофосфатный путь (ферментами митохондрий).

Энергетический выход анейробного гликолиза, когда глюкоза распадается до молочной и пировиноградной кислот, составляет 2 молекулы АТФ; при аэробном расщеплении одного моля глюкозы, когда молочная и пировиноградная кислоты вступает в цикл Кребса, образуется 38 молей АТФ; наконец, прямое окисление одного моля глюкозы – глюкозо-1-монофосфатный путь с вовлечением в процесс липидов дает образование от 117 до 130 молей АТФ.

Резервы кислорода в организме также весьма ограничены. Общая кислородная емкость организма составляет 1,5 л (легкие 370, артериальная кровь – 280, венозная – 600, мышцы – 140, остальные органы – 60 мл). Так как организм в покое потребляет в одну минуту около 280 мл кислорода, то запасов его хватает всего на 5-6 мин. Даже при дыхании чистым кислородом его резерв достигает всего 3,3 л. Такого количества хватает всего на 10-12 мин.

Известно, что кислород артериальной крови находится в двух состояниях – физически растворенном (около 3-4 мл на л) и непрочном соединении с гемоглобином – оксигемоглобин (около 190-210 мл/л). Так как содержание гемоглобина в крови близко к 145-160 г/л, а каждый грамм гемоглобина способен связывать 1,34 мл кислорода, то кислородная емкость крови определяется в 220 мл/л. В венозной крови содержание кислорода близко к 120-160 мл/л, и таким образом, артериовенозная разница по кислороду составляет в среднем около 50 мл/л. Широкий разброс содержания кислорода в венозной крови связан с тем, что различные органы потребляют неодинаковое количество кислорода. Так, артериовенозная разница для миокарда равна 120, мозга – 60, печени – всего 15 мл/л.

Концентрация кислорода в атмосферном воздухе близка к 21%, однако для медицины более важным показателем является парциальное давление этого газа (рО2), которое пропорционально содержанию кислорода в смеси. рО2 на уровне моря равно 159, в альвеолярном воздухе – около 100, в артериальной крови 90-95, в венозной крови – 40, в тканях – около 40 мм рт.ст. (33-53 мм). При парциальном давлении кислорода в альвеолярном воздухе в 100-110 мм рт.ст. сатурация гемоглобина кислородом артериальной крови равна 96-98%, венозной – 73-75%. Снижение раО2 до 50 мм рт.ст. уменьшает степень сатурации гемоглобина до значений ниже 80%. Здесь же отметим, что рСО2 альвеолярного воздуха, раСО2, рвСО2 и рН венозной крови равны, соответственно, 38, 40, 46 мм рт.ст. и 7,36 ед.

Основное назначение кислорода заключается в использовании его как акцептора протонов (ионов водорода) в процессах тканевого дыхания и связанного с ним окислительного фосфорилирования. Если потребности в АТФ не удовлетворяются, то развивается состояние энергетического голода, приводящее к закономерным последствиям в виде метаболических, функциональных и морфологических нарушений вплоть до гибели клеток. Одновременно в организме возникают разнообразные приспособительные и компенсаторные реакции. Совокупность всех этих процессов получила наименование гипоксии. Гипоксия (hypo – под, ниже, oxydation – окисление) – это типовой патологический процесс, который развивается в результате недостаточного снабжения тканей кислородом или нарушения его утилизации в процессе биологического окисления. Снижение напряжения кислорода в крови получило наименование гипоксемии.

Истоки изучения кислородного голодания берут свое начало в 16 веке, когда испанец Де Акоста описал симптомокомплекс, возникший у человека в условиях высокогорья, который заключался в нарушении функций ЦНС, сердечно-сосудистой и дыхательной систем. Де Акоста связал эти нарушения с понижением содержания кислорода в горах. Последующие многочисленные сведения о проявлениях гипоксии почерпнуты из наблюдений над альпинистами при восхождениях на горные вершины, воздухоплавателями во время полетов на воздушных шарах и дирижаблях, пилотами во время высотных полетах, добровольцами, находившимися в барокамерах или дышавшими различными гипоксическими смесями, а также из экспериментов над животными. Так, Бэр в 1878 г. наблюдал развитие тяжелого гипоксического состояния у воробья, находившегося в условиях низкого барометрического давления, близкого к 210 мм рт.ст. (нормальное барометрическое давление равно 760 мм рт.). Такое тяжелое состояние животного при данном атмосферном давлением Бэр связал с низким парциальным давлением кислорода в воздухе, равном 41 вместо 159 мм рт.ст., при котором содержание кислорода в артериальной крови составляло 100 вместо 200 мл/л.

Основы разработок проблемы гипоксии заложил И.М. Сеченов фундаментальными исследованиями по физиологии дыхания и газо-обменной функции крови в условиях нормального, пониженного и повышенного барометрического давления. В.В. Пашутин создал общее учение о кислородном голодании как одной из основных проблем общей патологии. П.А. Альбицкий установил значение фактора времени и роли компенсаторных факторов в развитии гипоксии.

Значительный вклад в проблему гипоксии внесли выдающиеся отечественные (Н.Н. Сиротинин, И.Р. Петров и другие) и зарубежные (Д. Холден, Д. Баркрофт и другие) исследователи. В настоящее время гипоксические состояния у человека и животных моделируются путем «подъема» на высоту в барокамерах (гипобарическая гипоксия) или вдыхания гипоксических смесей (нормобарическая гипоксия). В опытах на животных возможно применение тканевых или кровяных ядов.

Классификация гипоксических состояний. В зависимости от этиологических факторов и патогенеза выделяют следующие основные типы гипоксии:

1. Экзогенная

· Нормобарическая;

· Гипобарическая.

2. Эндогенная

· (2) Респираторная (дыхательная);

· (3) Циркуляторная (сердечно-сосудистая);

· (4) Гемическая (кровяная);

· (5) Тканевая;

· (6) Перегрузочная (гипоксия нагрузки);

· (7) Субстратная;

· (8) Смешанная.

По критерию распространенности гипоксических состояний выделяют

· местную,

· общую гипоксию.

По клиническому течению, скорости развития и длительности течения выделяют

· молниеносную,

· острую,

· подострую,

· хроническую гипоксию.

По степени тяжести различают

· легкую,

· умеренную,

· тяжелую,

· критическую (смертельную) гипоксию.


Дата добавления: 2015-09-03 | Просмотры: 1017 | Нарушение авторских прав



1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |



При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)