АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Пример выполнения курсового задания К 2

Прочитайте:
  1. II. Порядок выполнения работы
  2. II. Порядок выполнения работы
  3. III. Порядок выполнения работы.
  4. VII. Правила выполнения маневров, связанных с прохождением судов относительно морских дноуглубительных судов при встречном плавании
  5. Альтернирующие синдромы – примеры, этиология, клиническая симптоматика.
  6. Б). Тестовые задания для компьютерного тестирования
  7. Б). Тестовые задания для контрольного тестирования
  8. Б). Тестовые задания для контрольного тестирования
  9. Векторный способ задания движения точки
  10. Внутривенное введение лекарственного вещества на примере эуфиллина

 

 

Дано: схема плоского механизма (рис. 2.25); уравнение движения груза 1: Х = 2·t2 + 2, см; радиусы колес: R2 = 50 см; r2 = 30 см; R3 = 60 см; r3 = 40 см. Определить кинематические характеристики точки М тела 3 в момент времени t1 = 1 c (VM(t1) =?; (t1) =?; (t1) =? (t1) =?).

Решение. В начальный момент времени при t0 = 0 координата X(t0) = 2·(t0)2 + 2 = 2·02 + 2 = 2 см. Дифференцированием по времени уравнения движения груза 1 найдем проекцию скорости его центра масс на ось ОХ:

= = dX/dt = d(2t2 + 2)/dt = 4·t.

Так как = 4·t > 0, то = V и, следовательно, координата Х = f(t) с течением времени увеличивается. Для графического построения определяемых кинематических характеристик изобразим механизм в произвольный момент времени t (рис. 2.26).

Так как груз 1 и участок АВ нити совершают поступательные движения, то справедливо равенство V B = V.

Точка В принадлежит телу 2, совершающему вращательное движение в системе отсчёта C2X2Y2Z2, поэтому модуль скорости этой точки определится из формулы VB = ω2·BC2 = ω2·r2 = I I·r2, где ω2 – модуль угловой скорости тела 2. Согласно рис. 2.26 вращение тела 2 происходит против хода часовой стрелки. Определим модуль ω2 угловой скорости тела 2 по формуле ω2 = VB/r2 = V/r2. По известному модулю ω2 угловой скорости тела 2 определяется модуль VC скорости точки С тела 2:


VC = ω2·CC2 = ω2·R2 = (V/r2)·R2 = V·(R2/r2).

 

Так как участок нити CD совершает поступательное движение, то справедливо равенство VC = VD = V·(R2/r2). С другой стороны, точка D принадлежит колесу 3. Исходя из условия принадлежности этой точки телу 3, имеем VD = ω3·R3 = V·(R2/r2), где ω3 – модуль угловой скорости тела 3. Тело 3 осуществляет вращение в направлении хода часовой стрелки. Его угловая скорость вычисляется по формуле

= ·(R2/(r2·R3)) = (4·t)·(R2/(r2·R3)).

По известной угловой скорости тела 3, находят его угловое ускорение .

= d /dt = 4·(R2/(r2·R3)) = const > 0.

Так как > 0 и = const > 0, то происходит равноускоренное вращение тела 3. Определяем кинематические характеристики точки М тела 3 в момент времени (t1).

Модуль угловой скорости

ω3(t1) = I (t1)I = (4·t1)·(R2/(r2·R3)).

Модуль углового ускорения

ε3(t1) = = 4·(R2/(r2·R3)).

Модуль скорости точки М равна

VM(t1) = ω3(t1)·MC3 = ω3(t1)·r3 = (4·t1)·(R2·r3/(r2·R3)).

Модуль центростремительного ускорения точки М

(t1) = (ω3(t1))2·MC3 = (ω3(t1))2·r3 = (4·t1·(R2/(r2·R3)))2·r3.

Модуль вращательного ускорения равен

(t1) = ε3(t1)·r3 = 4·(R2·r3/(r2·R3)).

Модуль полного ускорения точки М

.

Произведём вычисления для момента времени t1 = 1 c и полученные значения сведём в таблицу.

Таблица

 

ω3(t1), рад/с ε3(t1), рад/с2 VM(t1), см/с (t1), см/с2 (t1), см/с2 (t1), см/с2
1,111 1,111 44,444 49,382 44,444 66,434

 

Кинематические характеристики точки М показаны на рис. 2.26.

 


Дата добавления: 2015-09-27 | Просмотры: 459 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.007 сек.)