АкушерствоАнатомияАнестезиологияВакцинопрофилактикаВалеологияВетеринарияГигиенаЗаболеванияИммунологияКардиологияНеврологияНефрологияОнкологияОториноларингологияОфтальмологияПаразитологияПедиатрияПервая помощьПсихиатрияПульмонологияРеанимацияРевматологияСтоматологияТерапияТоксикологияТравматологияУрологияФармакологияФармацевтикаФизиотерапияФтизиатрияХирургияЭндокринологияЭпидемиология

Регуляция обмена углеводов.

Прочитайте:
  1. Ауторегуляция органного кровотока
  2. Биологическое значение воды. Изменения водно-солевого обмена человека во время занятий фкис.
  3. Болезни аминокислотного обмена
  4. БОЛЕЗНИ ОБМЕНА ВЕЩЕСТВ
  5. Болезни, связанные с нарушением обмена углеводов
  6. В промышленном масштабе используют 5 основных методов опреснения воды: дистилляции, вымораживания, обратного осмоса, электродиализа, ионного обмена.
  7. Введение в физиологию. Физиология ЦНС и нервная регуляция функций
  8. Вегетативная нервная система, морфофункциональная организация и функции ее отделов. Вегетативные рефлексы и регуляция висцеральных систем организма.
  9. Вегетативная нервная система, морфофункциональная организация и функции ее отделов. Вегетативные рефлексы и регуляция висцеральных систем организма.
  10. Вентиляция помещений. Кратность воздухообмена в детских коллективах.

Основным параметром регулиро­вания углеводного обмена является поддержание уровня глюкозы в крови в пределах 4,4—6,7 ммоль/л. Изменение содержания глю­козы в крови воспринимается глюкорецепторами, сосредоточен­ными в основном в печени и сосудах, а также клетками вентромедиального отдела гипоталамуса. Показано участие ряда отделов ЦНС в регуляции углеводного обмена.

Выраженным влиянием на углеводный обмен обладает инсу­лин — гормон, вырабатываемый р-клетками островковой ткани поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Инсулин является единственным гор­моном, понижающим уровень глюкозы в крови, поэтому при уменьшении секреции этого гормона развиваются стойкая гипергликемия и последующая глюкозурия (сахарный диабет, или са­харное мочеизнурение).

Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый альфа-клет­ками островковой ткани поджелудочной железы; адреналин — гормон мозгового слоя надпочечников; глюкокортикоиды — гормо­ны коркового слоя надпочечника; соматотропный гормон гипофи­за; тироксин и трийодтиронин — гормоны щитовидной железы. В связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсу­лина эти гормоны часто объединяют понятием «контринсулярные гормоны».

 

64. Энергетический баланс организма. Основной и рабочий обмен. Методы исследования энергетиче­ского обмена. Прямая и непрямая калориметрия.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соедине­ний, поступивших с пищей, превращается в тепловую, механи­ческую и электрическую. Энергия расходуется не только на под­держание температуры тела и выполнение работы, но и на воссоз­дание структурных элементов клеток, обеспечение их жизнедея­тельности, роста и развития организма.

Теплообразование в организме имеет двухфазный характер. При окислении белков, жиров и углеводов одна часть энергии исполь­зуется для синтеза АТФ, другая превращается в теплоту. Теплота, выделяющаяся непосредственно при окислении питательных ве­ществ, получила название первичной теплоты. Обычно на этом этапе большая часть энергии превращается в тепло (первичная теплота), а меньшая используется на синтез АТФ и вновь аккумулируется в ее химических макроэргических связях. Так, при окис­лении углеводов 22,7% энергии химической связи глюкозы в про­цессе окисления используется на синтез АТФ, а 77,3% в форме первичной теплоты рассеивается в тканях. Аккумулированная в АТФ энергия используется в дальнейшем для механической рабо­ты, химических, транспортных, электрических процессов и в ко­нечном счете тоже превращается в теплоту, обозначаемую вторич­ной теплотой. Следовательно, количество тепла, образовавшегося в организме, становится мерой суммарной энергии химических связей, подвергшихся биологическому окислению. Поэтому вся энергия, образовавшаяся в организме, может быть выражена в единицах тепла — калориях или джоулях.

Для определения энергообразования в организме используют прямую калориметрию, непрямую калориметрию и исследование валового обмена.

Прямая калориметрия

Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом. Био­калориметр представляет собой герметизированную и хорошо теп­лоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере че­ловеком или животным, нагревает циркулирующую воду. По количеству протекающей воды и изменению ее температуры рассчиты­вают количество выделенного организмом тепла.

Одновременно в биокалориметр подается О2 и поглощается избыток СО2 и водяных паров. Продуцируемое организмом человека тепло измеряют с помощью термометров по нагреванию воды, протекающей по трубкам в камере.

Непрямая калориметрия

Методы прямой калориметрии очень громоздки и сложны. Учи­тывая, что в основе теплообразования в организме лежат окис­лительные процессы, при которых потребляется О2 и образуется С02, можно использовать косвенное, непрямое, определение теп­лообразования в организме по его газообмену — учету количества потребленного О2 и выделенного СО2с последующим расчетом теплопродукции организма.

Для длительных исследований газообмена используют спе­циальные респираторные камеры (закрытые способы непрямой калориметрии). Кратковременное определение газооб­мена в условиях лечебных учреждений и производства проводят более простыми некамерными методами (открытые способы кало­риметрии). Наиболее распространен способ Дугласа — Холдейн а, при котором в течение 10—15 мин собирают выдыхаемый воз­дух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого. Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обсле­дуемый свободно вдыхает атмосферный воздух, а выдыхает воз­дух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2.

Основной обмен.

Для определения присущего данному организму уровня окис­лительных процессов и энергетических затрат проводят исследо­вание в определенных стандартных условиях. При этом стремятся исключить влияние факторов, которые существенно сказываются на интенсивности энергетических затрат, а именно мышечную ра­боту, прием пищи, влияние температуры окружающей среды. Энерготраты организма в таких стандартных условиях получили название основного обмена.

Для мужчины среднего возраста (примерно 35 лет), среднего роста (примерно 165 см) и со средней массой тела (примерно 70 кг) основной обмен равен 4,19 кДж (1 ккал) на 1 кг массы тела в час, или 7117 кДж (1700 ккал) в сутки. У женщин той же массы он примерно на 10 % ниже.

 

65. Газовый анализ при калориметрии (полный, неполный). Калорический коэффициент кислорода. Дыхательный коэффици­ент.

Кислород, поглощаемый организмом, используется для окис­ления белков, жиров и углеводов. Окислительный распад 1 г каж­дого из этих веществ требует неодинакового количества О2 и со­провождается освобождением различного количества тепла. Количество тепла, освобождающегося после потребления ор­ганизмом 1 л 02, носит название калорического эквивалента кис­лорода. Зная общее количество О2, использованное организмом, можно вычислить энергетические затраты только в том случае, если известно, какие вещества — белки, жиры или углеводы, оки­слились в теле. Показателем этого может служить дыхательный коэффициент.

Дыхательным коэффициентом (ДК) называется отношение объема выделенного СО2 к объему поглощенного О2. Дыхательный коэффициент различен при окислении белков, жиров и углеводов.

Определение энергетического обмена у человека в покое ме­тодом закрытой системы с неполным газовым анализом. Относи­тельное постоянство дыхательного коэффициента (0,85—0,90) у людей при обычном питании в условиях покоя позволяет произво­дить достаточно точное определение энергетического обмена у че­ловека в покое, вычисляя только количество потребленного кисло­рода и беря его калорический эквивалент при усредненном ды­хательном коэффициенте.

Количество потребленного организмом кислорода определяют при помощи различных спирографов.

Определив количество поглощенного кислорода и приняв ус­редненный дыхательный коэффициент равным 0,85, можно рассчи­тать энергообразование в организме; калорический эквивалент 1 л кислорода при данном дыхательном коэффициенте равен 20,356 кДж, т. е. 4,862 ккал. Способ неполного газо­вого анализа благодаря своей простоте получил широкое распро­странение.

66. Обмен веществ меж­ду организмом и внешней средой как основное условие жизни и сохране­ния гомеостаза. Пластическая и энергетическая роль питательных веществ. Физиологические основы рационального питания.

Организм человека — открытая система. Это значит, что организм обменивается с внешней средой как веществом, так и энергией.

Без поступления кислорода мы можем прожить около 7 минут, воды – 6 суток, еды - месяц.

В качестве потребляемых человеком веществ (В1) прежде всего следует указать питательные вещества (белки, жиры и углеводы).

Выделяют следующие группы веществ, поступление которых необходимо в организм для обеспечения его жизнедеятельности:

1. питательные вещества (белки, жиры и углеводы)

2. Вода

3. Минеральные соли

4. Витамины и микроэлементы

 


Дата добавления: 2015-12-15 | Просмотры: 847 | Нарушение авторских прав







При использовании материала ссылка на сайт medlec.org обязательна! (0.004 сек.)